博客
-
[调研] 如何提高强化学习算法模型泛化能力初探
在深度学习中,模型很容易过拟合到参与训练的数据集。因此,深度学习训练模型的时候通常会将数据集分成训练集和测试集,保证训练的模型在测试集上仍然有很好的性能,即模型的泛化能力。在深度强化学习的应用中,模型的泛化能力也同样重要。本文将介绍最近深度强化学习领域中提高模型泛化能力的一些方法,如域随机化、正则等。 -
[应用] AI加盟任务回归测试
将任务回归测试建模成序列决策问题,从而可以借用强化学习等AI技术来解决相关问题。通俗来说,此项创新最直接的效果便是今后在任务测试上只需要花费一顿饭的时间,AI就能帮助QA完成所需工作。