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Abstract— Learning to adapt to a series of different goals
in visual navigation is challenging. In this work, we present a
model-embedded actor–critic architecture for the multigoal visual
navigation task. To enhance the task cooperation in multigoal
learning, we introduce two new designs to the reinforcement
learning scheme: inverse dynamics model (InvDM) and multigoal
colearning (MgCl). Specifically, InvDM is proposed to capture
the navigation-relevant association between state and goal and
provide additional training signals to relieve the sparse reward
issue. MgCl aims at improving the sample efficiency and sup-
ports the agent to learn from unintentional positive experiences.
Besides, to further improve the scene generalization capability
of the agent, we present an enhanced navigation model that
consists of two self-supervised auxiliary task modules. The first
module, which is named path closed-loop detection, helps to
understand whether the state has been experienced. The second
one, namely the state-target matching module, tries to figure out
the difference between state and goal. Extensive results on
the interactive platform AI2-THOR demonstrate that the agent
trained with the proposed method converges faster than state-of-
the-art methods while owning good generalization capability. The
video demonstration is available at https://vsislab.github.io/mgvn.

Index Terms— Deep reinforcement learning, scene generaliza-
tion, visual navigation.

I. INTRODUCTION

V ISUAL navigation is an intelligent capability to deter-
mine the current position and then to plan a path toward

some goal location from the image or video inputs [1]–[4].
Due to the limitation of the camera’s angle of view, it is
hard to navigate with only visual inputs as the environment
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Fig. 1. Illustration of the proposed goal-dependent navigation model. Please
enlarge to see details.

is partially observable. Inspired by the recent success of
deep reinforcement learning in multiple fields, such as Atari
games [5], computer Go [6], and robotic manipulation [7],
the early efforts were made to train an agent to learn the skill
of navigating to a specific goal [8], [9].

Compared to the regular navigation task, goal-dependent
navigation is more challenging, which requires the agent to
learn to adapt to a series of different goals. That is, after
training, the agent is expected to own the capability of navi-
gating to a series of different goals from a randomly sampled
position and orientation, as shown in Fig. 1. Therefore, with
this technique, it is unnecessary to retrain the model for
different goals. There existed some pioneering works trying to
solve the problem of goal-dependent navigation based on deep
reinforcement learning [10]–[12]. For example, Zhu et al. [11]
used a Siamese actor–critic architecture with shaped rewards
to support navigating to different goals. Mirowski et al. [12]
introduced an auxiliary task and used a curriculum training
scheme to relieve the problem of sparse rewards in goal-
dependent navigation tasks. Although these methods have
achieved impressive performance, there remain some issues to
be addressed for goal-dependent navigation from visual inputs.
First, since the agent must learn to navigate to several different
goals from a random state, the agent needs to learn the
association between state and goal, as well as the association
between state and action; second, the agent interacts with
environments and generates a number of samples for each
goal. However, the specific samples are only used to train
their corresponding goals, which is a sample inefficient way
to train the agent.

To relieve the above limitations, we present a new model-
embedded actor–critic scheme that allows the agent to learn
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the skill of navigating to multiple goals cooperatively based
on visual observation only. First, as shown in Fig. 1, we intro-
duce an inverse dynamics model (InvDM) to the actor–critic
architecture, which is trained as an auxiliary task of predicting
the last action of the agent given its last and current state. The
benefits of such a dynamics model are threefold.

1) The action could be considered as an appropriate crite-
rion to distinguish the difference of the sequential states.
After training, the inverse model could better predict the
difference between the current state and goal, i.e., the
navigation-relevant association between state and goal.

2) Since the auxiliary task of predicting the last action is
trained by self-supervised learning, it could be leveraged
as guidance to push the agent to explore more efficiently.
Thus, the agent training could continue to develop in
the absence of extrinsic rewards. That is, such auxiliary
task could provide additional training signals to relieve
the sparse reward issue, which is a common limitation
shared by reinforcement learning methods.

3) Since a goal only changes the reward function instead of
the transition structure of the Markov decision process
(MDP), the dynamics model can be trained cooperatively
by sharing the InvDM when training an agent to adapt
to different navigation goals.

Furthermore, to improve the sample efficiency, we introduce
a sample augmentation method named multigoal colearning
(MgCl) that could make the agent learn from an unintentional
positive experience when interacting with the environment.
The idea can be explained by Fig. 1, where an agent has
multiple navigation goals to learn. When the agent is trying to
approach goal C, it may pass through goal B unintentionally.
Thus, the generated trajectories for navigating to goal C
are also valuable for learning to achieve goal B. That is,
the samples generated for one goal could be used to train the
agent for another navigation goal. Hence, the sample efficiency
can be improved significantly. Experimental results show that
the proposed architecture could accelerate the learning speed
in goal-dependent navigation tasks and maintain robust as
the number of the goals increases. Moreover, we allow the
agent to learn multiple goals in multiple different environments
simultaneously with only binary reward.

In addition to solving common problems in the training
process of the visual navigation agent, the agent’s general-
ization capability in different navigation scenes also needs
to be considered. Although the goal-dependent visual nav-
igation makes it possible that agents can execute different
strategies for different goals, these goals must have been seen
during the training stage. When facing an unknown scene or
new target, the agent can hardly complete navigation tasks
due to unfamiliar information (different positions, shapes,
and decoration). To tackle multiscenes and multitarget visual
navigation tasks, the generalization capability is necessary,
which can help reduce training time and directly complete the
navigation tasks without retraining in new scenes. If we can
build an auxiliary task to extract navigation-related features,
the strategies learned from it may have better generalization
capability. Therefore, we design two modules: 1) the path
closed-loop detection module, to make agents acquire the

capability of judging whether the current state is the one that
has been experienced and 2) the state-target matching module,
to help the agent evaluate the degree of difference between the
current state and the target state. These two modules make the
model adaptive to different navigation tasks, proving to yield
better generalization capability.

II. RELATED WORK

There has been a number of methods focusing on the task
of visual navigation [13]–[17]. Gupta et al. [18] designed
a unified joint architecture for mapping and planning in
unknown environments. Hussein et al. [19] introduced imita-
tion learning into navigation task. Recently, deep reinforce-
ment learning methods were introduced for navigation in
simulated 3-D scenes [20]–[22]. However, due to the sparse
reward signals in navigation tasks, the recent navigational
agents seek aids from auxiliary supervised tasks for train-
ing [23], [24]. Mirowski et al. [8] proposed to train agent with
auxiliary depth prediction and loop closure classification tasks.
Banino et al. [9] introduced a grid cell network that was
trained as an auxiliary task that enabled the agent to plan direct
trajectories to the goals. All these demonstrated auxiliary tasks
can be used to facilitate learning [25], [26]. Unlike the previous
work relying on external signals to assist training, we advocate
using the action signals to explore the difference between the
current state and goal and introduce an auxiliary task of action
prediction for training.

Recently, some efforts were made to handle the more
challenging navigation tasks, the goal-dependent visual nav-
igation [4]. Zhu et al. [11] used a feedforward Siamese
actor–critic architecture incorporating a pretrained ResNet to
support navigation to different goals in a discredited 3-D
environment. Mirowski et al. [12] presented a dual-pathway
agent architecture that enables the agent to navigate to a
series of goals in a city-scale, real-world visual environ-
ment. Pathak et al. [27] presented a method to learn the
trajectory between state and goal and then employed the
expert demonstration to communicate the goal for navigation.
Savinov et al. [14] proposed a semiparametric topological
memory (SPTM) that is trained in supervised fashion and acts
as a planning module in goal-directed navigation. Compared
to these methods, we propose a self-supervised InvDM to
better predict the difference between the current state and goal.
Besides, a sample augmentation scheme, MgCl, is introduced
to improve the sample efficiency and make the agent learn
from unintentional positive experiences.

It is noted that some previous works have investigated
the sample efficiency problem in reinforcement learning
[28], [29]. For example, Andrychowicz et al. [30] presented
a technique coined hindsight experience replay (HER) to
improve the sample efficiency when learning multigoal poli-
cies [31]. Andrychowicz et al. [30] developed a hierarchical
extension of HER in order to further speed up training.
However, HER is a method that each trajectory is used to
generate samples for arbitrarily assumed goals and the samples
are stored in a replay buffer, which makes it only applicable to
off-policy reinforcement learning scheme. By contrast, the pro-
posed MgCl could train the generated samples immediately
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without experience replay. Hence, it is suitable for online
methods, such as A3C.

Generalization problem has received much attention in
recent years from machine learning [32], [33], computer
vision [34], [35], and robotics [36]–[38] communities.
Lanctot et al. [39] pointed out that models based on rein-
forcement learning can easily overfit the training distribution.
To alleviate the overfitting issue, Farebrother et al. [40]
proposed to use the regularization in supervised learning,
while Mankowitz et al. [41] leveraged robust optimization.
Packer et al. [42] found that random noise such as parameter
space noise or environmental randomization can be intro-
duced into the training process to avoid overfitting. However,
Zhang et al. [43] show that environmental randomization may
work only in certain tasks, but not in others and even coun-
terproductive. Hashemzadeh et al. [44] proposed model-based
learning with subspaces method to achieve generalization and
faster learning. However, the effectiveness of the above meth-
ods has only been verified in simple tasks. When faced with
some complex problems, such as visual navigation, the number
of samples required by the above methods increases greatly,
and thus, it cannot converge.

III. MULTIGOAL VISUAL NAVIGATION MODEL

This section presents the details of the proposed architecture
for the task of goal-dependent visual navigation. We propose a
shared model and a colearning strategy for the same purpose:
enhancing cooperation in multigoal learning.

A. Preliminaries

The goal-dependent reinforcement learning aims to train
an agent interacting with an environment to maximize the
expected future rewards [45] for a goal. It is concerned with
policy optimization in an MDP, which is formalized as a tuple
M(s, g, a, r, γ ), where S = {s} denotes a set of finite states,
G = {g} denotes a set of possible goals, A = {a} denotes a set
of actions, r denotes the state-reward function, and γ ∈ (0, 1]
is a discount factor. The reward function rg(s, a, s ′) depends
on the current goal and state. A stochastic policy π(a|s, g)
maps each pair of state and goal to an action and defines the
behavior of the agent.

At each discrete time step t , the agent observes the state st

and chooses an action at according to its policy π(at |st , gt).
One time step later, the agent receives a numerical reward rt

and finds itself in a new state st+1. The process continues until
the agent achieves the given goal. The return Rt is the total
accumulated rewards from time step t . The aim of the agent
is to learn an optimal control policy π , which maximizes its
expected return until the goal is completed. A3C could update
both the policy function π(at |st , gt; θπ) and the state-value
function V (st , gt; θv) by n-step returns. The policy and the
value function are updated after every tmax actions or when a
given goal is completed. The total accumulated return from
time step t is defined as

Rt =
k−1∑
i=0

γ i rt+i + γ k V (sk+t , gk+t ; θv) (1)

where k may vary from state to state and is upper bounded
by tmax.

The entropy H of the policy π [46] is added to the objective
function to alleviate premature convergence to suboptimal
deterministic policies. The gradient of the full objective func-
tion can be regarded as

∇θπ
logπ(at |st , gt; θπ)(Rt − V (st , gt; θv))

+ β∇θπ
H (π(st, gt; θπ)) (2)

where β controls the strength of the entropy regularization
term. The final gradient update rules are listed as follows:

θπ ← θπ + η∇θπ
logπ(at |st , gt; θπ)

× (Rt − V (st , gt; θv))+ β∇θπ
H (π(st, gt; θπ)) (3)

θv ← θv + η∇θv
(Rt − V (st , gt; θv))

2 (4)

where η denotes the learning rate.

B. Network Architecture With Multigoal

As illustrated in Fig. 2, we design a new A3C-based deep
model for the goal-dependent visual navigation task. The
model takes the goal as part of the inputs and enables the
agent to learn a series of different goals jointly. Meanwhile,
the two pathways of the proposed model may learn two
different types of feature representations: general and special.
The general feature representation (denoted by green) depends
only on the current observation and could be used to support
cognitive processes, such as scene understanding. The special
feature representation (denoted by red) relies on the current
observation and the goal, which is beneficial to long-range
planning.

The proposed model takes two inputs, observation of current
state xt and observation of goal xg, and produces a probability
distribution over the action space and a value function. The
value function can represent the utility of any state s and given
goal g. We train the proposed model through end-to-end deep
reinforcement learning by incorporating an auxiliary objective.
The aim of the training is to simultaneously maximize the
cumulative reward using an actor–critic approach and mini-
mize an auxiliary loss defined by the predicted last action and
the true last action, as defined in Section III-C.

The details of the architecture are described as follows.
First, a feature extractor consists of two convolutional layers
and a fully connected layer. It is shared to process the state and
goal images to produce the visual features fs and fg , respec-
tively. The first convolutional layer has a kernel of size 8× 8,
a stride of 4×4, and 16 feature maps. The second layer has a
kernel of size 4×4, a stride of 2×2, and 32 feature maps. The
fully connected layer has 256 hidden units. Rectified linear
units (ReLUs) separate the layers. Second, the visual feature
of the state fs(Xt) is concatenated to the visual feature of
goal fg(Xg). The fully connected hidden layer has 256 hidden
units with ReLU and outputs hidden activation ha( fs , fg). The
action predictor module ga(ha) is a fully connected layer with
64 hidden units and could predict the last action at−1 with a
softmax layer. Final, the long short-term memory (LSTM) has
256 hidden units and outputs LSTM hidden activation hs( fs).
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Fig. 2. Details of the proposed deep reinforcement learning model for goal-dependent navigation.

The hidden activation ha is concatenated to the LSTM hidden
activation hs . The policy π is predicted with the softmax layer.
The value function V is yielded by the fully connected layer.

C. Inverse Dynamics Model

For the visual navigation, if capturing the association
between the current state and the goal, the agent could well
address the interplay between planning and real-time action
selection. Hence, as shown in Fig. 2, an InvDM is incorporated
into the actor–critic architecture. The InvDM is trained as an
auxiliary task of predicting the last action of the agent given
its last state and current state. The action prediction could be
rendered as an appropriate assessment to determine which is
the critical differences between sequential states. Thus, after
training, the navigation-relevant difference between the current
state and the goal can be predicted by the InvDM, which is
valuable for long-range planning.

In the implementation, the auxiliary task is trained in a
self-supervised manner and could produce extra continuous
gradients. Hence, the sparse reward issue in reinforcement
learning could be relieved by such auxiliary tasks that could
provide additional training signals. Meanwhile, as aforemen-
tioned, one goal only changes the reward function rather than
the transition structure of MDP. Thus, the proposed InvDM
could be shared and trained cooperatively across all goals.
That is, the capability of navigating to one goal may benefit the
learning of navigating to another goal by sharing the InvDM.

The training process of InvDM is illustrated in the right
part of Fig. 2. It takes an observation of current state xt and

an observation of last state xt−1 as inputs and produces a
probability distribution over the action prediction. The action
is predicted with an extra optimization objective function
defined by the cross-entropy classification loss as follows:

La = −
∑

i

ai · log āi (5)

where i denotes the index of action, and a and ā represent the
true action and predicted action, respectively.

D. Multigoal Colearning

For the goal-dependent navigation task, the agent interacts
with the environment and generates a number of samples for
each goal. However, as aforementioned, the generated samples
are normally used to train a specific goal in the current
methods, which is apparently sample-inefficient for agent
training. Herein, we present a sample augmentation strategy
MgCl to make the agent learn from unintentional yet useful
experiences when interacting with the environment. That is,
the generated samples of navigating to one goal may benefit
the learning of navigating to the other goals. Hence, multiple
goals could be learned by the agent cooperatively. Suppose
that an agent has a number of goals gA, gB , . . . ∈ G ⊆ S,
each goal corresponds to a state, and only a goal-achieving
reward rg(s, a, s ′ = rg(s, a, g) = 1 is provided. When the
agent is trying to achieve gA, it may have a state s = gB

by chance. The reward for gA is rgA (s, a, gB) = 0 because the
state s = gB is not the terminal state for gA, whereas the MDP
of navigating to gA is the same to the MDP of going to gB ,
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Algorithm 1 MgCl
Given asynchronous advantage actor-critic (A3C) and a
set of goals G.
Initialize:
• The global shared network parameter vectors θ and

global shared counter T = 0,
• The thread-specific weights θ ′ and thread step

counter t ← 1.

while T � Tmax do
Reset gradients dθ ← 0
Synchronize weights θ ′ = θ
tstart = t
Get state st and goal gt

//sample
while not terminal st and t − tstart �= tmax do

Perform at according to policy π(at |st , gt; θ ′)
Receive reward rt and the new state st+1

gt+1 ← gt

t ← t + 1
T ← T + 1

end
//train for goal gt

R =
{

0 for terminal st

V (st , gt , θ
′) for non-terminal st

for i ∈ {t − 1, . . . , tstart } do
R← ri + γ R
Accumulate gradients wrt dθ ← dθ ′ using equ. 3,
equ. 4 and equ. 5.

end
//train for other goal g′
for i ∈ {tstart , . . . , t} do

for g′ ∈ G do
if g′ == si then

Set reward r ′ ← r(s, a, g′).
Generate trajectory of goal g′.
Accumulate gradients for goal g′.

end
end

end
Perform asynchronous updates of θ using dθ and η.

end

i.e., M(s, gA, a, rgA , γ ) and M(s, gB , a, rgB , γ ) are identical,
except for the reward function. Thus, parts of the trajectory
generated for gA can also be served as the ones generated for
gB . Especially, since the reward of gB in the state s = gB is
rgB (s, a, gB) = 1, it is quite useful for the agent to learn to
achieve gB . That is, the samples generated for gA could be
used to train the agent to navigate gB .

However, it does not imply that additional trajectories would
be generated certainly by the proposed MgCl. It takes effect
when the agent drops into a state where another goal is
achieved. Thus, as the agent becomes more skilled, the agent
would navigate to the goal with more direct routes and hardly
drop into other unintentional goals. That is, the proposed
MgCl would contribute more at the beginning of training and

Fig. 3. Details of the proposed model for scene generalization of goal-
dependent navigation.

gradually decrease as the training goes on. Meanwhile, for
the goal-dependent visual navigation, not every state could
be regarded as a goal or a terminal state, e.g., the white
wall, a common interior structure, and has few discriminative
features. Thus, it is meaningless to learn to navigate to it. More
details of MgCl can be found in Algorithm 1.

IV. ENHANCED NAVIGATION MODEL

FOR GENERALIZATION

Similar to the inverse model auxiliary task, the auxiliary task
can help agents acquire good generalization capability while
training. Hence, we propose two auxiliary modules to improve
the agent’s capability of scene generalization as follows.

A. Network Architecture for Scene Generalization

As illustrated in Fig. 3, we design a new module-based deep
model for visual navigation. The model mainly consists of
four parts: feature extraction module, modular auxiliary task
module, A3C module, and value function module. We train
the proposed model through end-to-end deep reinforcement
learning combined with some modular auxiliary tasks. The aim
of the training is to simultaneously maximize the cumulative
reward using an actor–critic approach and minimize two
auxiliary losses defined in (6) and (7). We use the alternate
update to approximate the optimal solution. When calculating
the two different auxiliary losses, respectively, the inputs
are described in Sections IV-B and IV-C. When training via
A3C, the proposed model has two inputs: an observation of
current state xt and observation of goal xg. The outputs are
a probability distribution over the action space and a value
function.

The details of the architecture are described briefly as
follows. First, the feature extractor consists of two ResNet-50
layers with shared weights. They process the current state
and goal images, respectively, and generate the corresponding
visual features fs and fg , both of which are 2048-D vectors.
Second, the path closed-loop detection module includes a
layer of LSTM network with 256 hidden units and a three-
layer fully connected network. The numbers of hidden layers
in the middle two layers of a fully connected network are
128 and 64, respectively. The activation function of the above
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Fig. 4. Path closed-loop detection module workflow.

network is ReLu. The last output layer has four hidden units,
and the activation function is softmax. Third, in the state-target
matching module, the visual feature of the state fs(Xt ) is
concatenated to the visual feature of another state fg(Xg)
and then used as the input of a four-layer fully connected
network. The numbers of hidden units in this network are
512, 256, 64, and 3, respectively. The activation function of
the first three layers is ReLu, and one of the last layers is
softmax. For the strategy and the value function, we employ
the LSTM network to deal with the current state’s feature
fs(Xt), pass through a full connection neural network with
128 hidden units, and, finally, produce an output vector. At the
same time, the two feature vectors fs(Xt ) and fg(Xg) are
connected with a two-layer full connected network, which
has 512 and 256 hidden units. The fully connected network
produces another output vector. The two output vectors are
further coupled to produce the final strategy (dimension 3) and
value function (dimension 1). The activation function of the
output layer of the strategy is softmax. The output layer of the
value function has no activation function, and the others are
ReLu layers.

B. Path Closed-Loop Detection Module

In visual navigation tasks, an episode often consists of
hundreds or even thousands of steps, and some of which
are repeated. For the optimal path to the target, it is often

impossible to repeatedly reach or stay in a certain state.
Determining whether a state has occurred during training is
of great help for completing navigation tasks. Such capability
could ensure that no matter how the navigation scene changes,
each state occurs only once in the optimal path.

Based on this observation, we store all the samples and their
sequence in the current episode of the training process. When
entering a new state, we compare it with the samples in the
memory to determine whether the agent has ever reached this
state and the time of its previous visit. This information can
be used as a training sample and label to train auxiliary tasks
in a supervised manner.

Since the agent’s repeated arrival to a certain state is
largely related to the previous action sequence, the previous
action sequence should also be used as part of the input. The
sequence of actions grows dynamically with the length of the
episode. A general forward neural network cannot process this
variable sequence, so a recurrent neural network (RNN) is
introduced to extract the temporal information. In addition,
we hope that the closed-loop detection is only related to the
state, and thus, the navigation target is excluded from the input
information. With this insight, as shown in Fig. 4, we design
a path closed-loop detection module to make the agent have
the capability of distinguishing whether the current state has
occurred or not.

The module is composed of an LSTM network and a three-
layer fully connected network. Its input is the output feature
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of the current state by the feature extractor. The intermediate
output will also participate in the final strategy selection and
value function estimation. The supervised learning method
is used to train the module, and its label is the repeated
information of the current state in the current episode. The
specific labels are set as follows.

1) If the current state occurs more than once in the current
episode and the time interval between the last repeated
and the current state is less than 10 steps, the label is
set to 1.

2) If the state occurs more than once and the time interval
is between 10 and 100 steps, the label is set to 2.

3) If the state occurs more than once and the time interval
is greater than 100, the label is set to 3.

4) If the current state is unique, the label is set to 4.

This is a supervised classification task with labels in four-value
one-hot encoding. The loss function is defined by cross-
entropy classification loss as follows:

Lb = −
∑

i

bi · log b̄i (6)

where i denotes the index of current state category, and
a and ā represent the true category and predicted category,
respectively.

C. State-Target Matching Module

By matching the current state with the target state, the agents
could judge whether the current state is approaching the target
step by step and determine the next action. This implies
that how to evaluate the proximity between the current state
and the target is the key to navigation success. Therefore,
a state-target matching module can be trained to evaluate the
similarity between the two pictures, so as to help the agent
identify the distance between the current state and the target.
Such capability is independent of the environment and the
target and also provides the possibility to improve the scene
generalization capability of agents in navigation.

As shown in Fig. 5, we employ the auxiliary task to
embed a state-target matching module into the model. In an
episode, the closer the two samples are, and the higher their
similarity is. Therefore, the state and the distance between
states in the episode stored in memory can be used as training
data. The input of the model should contain two states of
an episode (maybe the same state), and the output label is
the distance between these two states in the episode. This
structure also does not require additional signals from the
environment.

We cast it as a classification task via supervised learning
to train this module. The training data and labels come from
the memory for the episode. At each training step, the data
include the two states sampled from the same episode and
their interval in the episode as the distance label. The details
are as follows.

1) If the distance between the two states is less than 10,
the label is set to 1.

2) If the distance between the two states is greater than or
equal to 10 and less than 30, the label is set to 2.

Fig. 5. State-target matching module workflow.

3) If the distance between the two states is greater than or
equal to 30, the label is set to 3.

The labels are one-hot-encoded 1×3 vector. The loss function
is defined by cross-entropy classification loss as follows:

Lc = −
∑

i

ci · log c̄i (7)

where i denotes the index of category, and a and ā represent
the true category and the predicted category, respectively.

V. EXPERIMENTAL RESULTS

This section tests the proposed method on AI2-THOR [47],
which is an open-source set within the Unity3D game engine,
and enables navigation in a set of near-photorealistic indoor
scenes. Here, we choose four different categories of scenes:
Bathroom, Bedroom, Kitchen, and Living room to illustrate
the navigation performance. It is worth noting that the size
of Bathroom is the smallest, while the Kitchen is the biggest
scene. One example of the bedroom scenes that the agent can
navigate in and interact with is shown in Fig. 1. The detailed
settings of the environment in the experiments are given as
follows.

1) Action Space: There are three actions to learn: moving
forward, turning left, and turning right. The move action
has a constant step length (0.5 m), and the turn action
has a constant angle (90◦). The scene space is discretized
into a grid-world representation.

2) Observations and Goals: Both observations and goals
are images taken in the first-person view. The actual
inputs to the agent are 84 × 84 images downsampled
from the original size 300× 300. Given a target image,
the goal is to navigate to the location and viewpoint
where the target image is taken.

3) Reward Design: The environments only provide a goal-
achieving reward (1.0) upon task completion.

In the implementation, we set the discount factor γ = 0.99,
the RMSProp decay factor α = 0.99, the exploration rate
ε = 0.1, and the entropy regularization term β = 0.01.
Besides, we used 16 threads and performed updates after every
five actions (i.e., tmax = 5). To relieve the bias behavior, all
the goals and scenes were trained, in turn, in each thread in
the experiments. The performance could be evaluated quanti-
tatively in terms of the number of episodes that terminate in
every 2000 frames over all goals. For each goal, we randomly
initialize the starting location of the agent, and the episodes
will not terminate until the agent reaches the goal. Hence,
the number of episodes may indicate how many times the
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Fig. 6. Testing of our model in different scenes. Due to space limit, “A3C + InvDM” is abbreviated to “InvDM,” so do the other terms.

agent reaches the goal, which could indicate how well the
agent is trained. Each test was repeated five times with
different seeds. We report the average final rewards and plot
the mean and standard deviation of the reward statistic.

A. Ablation Study of the Inverse Dynamics Model

To show the benefit of the proposed InvDM for the
goal-dependent visual navigation, an ablation study is made
between A3C and A3C + InvDM (abbreviated to “InvDM”
in Fig. 6) in the scenes of Bathroom, Bedroom, Kitchen, and
Living room with different number of goals, i.e., two goals
and four goals. It is noted that the A3C here is a goal-
dependent variant of the standard baseline [46]. The network
architectures of A3C and A3C + InvDM are identical except
that A3c + InvDM is trained with an additional auxiliary loss
defined by (5).

The learning curves in Fig. 6 show that A3C + InvDM
obtained better performance than A3C in all cases, in terms
of both convergence speed and rewards. This might because
InvDM can well capture the navigation-relevant association
between state and goal and encourage cooperation when
training an agent to multiple goals. Meanwhile, the faster
convergence speed may also attribute to the denser training
signals offered by InvDM, which could relieve the common
sparse reward issue in reinforcement learning.

Besides, it is also found that the improvement of
A3C + InvDM over A3C in Kitchen is more obvious than
that in Bathroom. As Kitchen is bigger and more clustered than
Bathroom, such result implies that InvDM has good potential
in challenging scenes. In addition, as the number of navigation
goals increases, A3C + InvDM maintains good performance,
while A3C drops rapidly. Hence, the robustness of InvDM
with respect to the number of goals could be proved.

B. Ablation Study of the Multigoal Colearning

A similar study was conducted to investigate the effect
of MgCl for goal-dependent visual navigation tasks. We can
observe that A3C + MgCl converges faster than A3C while
achieving better final performance in all cases. Taking the
Kitchen with four goals, for example, A3C + MgCl produced
the performance of about 58 rewards after training with
1.25 million frames, while A3C has about two rewards. Com-
paring Bathroom with Kitchen, the advantage of A3C + MgCl
over A3C in Kitchen is also more significant than that in
Bathroom, which indicates that MgCl could improve the agent
training in complex scenes. In addition, similar to InvDM,
MgCl could help A3C maintain stable performance as the
number of goals increases. This proves that MgCl makes the
training of agents benefit from the training of agents with other
navigation goals, which finally leads to the improvement in
sample efficiency.

Moreover, to further prove the benefit of the combination
of InvDM and MgCl, we compare the performance of InvDM,
MgCl, and InvDM + MgCl in the scenes of Bathroom,
Bedroom, Kitchen, and Living room with two goals and four
goals, respectively. As shown in Fig. 6, InvDM + MgCl
significantly outperforms InvDM and MgCl in all scenes,
in terms of both convergence speed and rewards.

C. Results of Learning in Multiple Scenes

In this section, the proposed method was tested to learn
multiple goals in different scenes simultaneously. Similarly,
the experiments were conducted in the four typical scenes
of Bathroom, Bedroom, Kitchen, and Living room with two
goals and four goals, respectively. Different scenes may have
different environmental dynamics. Thus, when learning in
multiple scenes at the same time, the network parameters
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Fig. 7. Comparison to state-of-the-art methods in multiple scenes with different number of goals.

of InvDM could be trained and shared in two manners: full
share with a single-branch model and partial share with a
multibranch model, as described in the following.

1) Single-Branch: All parameters of InvDM are shared by
all scenes, i.e., full share.

2) Multibranch: All parameters of InvDM are shared,
except the fully connected layers, i.e., partial share.

We compare the proposed two models in terms of con-
vergence speed and rewards. From Fig. 7, the multibranch
model outperforms the single-branch one in both two indexes
in the two different configurations. We hypothesize that the
partial share scheme makes it possible to capture the particular
characteristics in a scene that may vary across scene instances.
It can also be found that the multibranch model is robust to
the increasing of the number of scenes, indicating that it is
easy to apply our method to the situation with more scenes.

Furthermore, we compare the proposed model with state-
of-the-art methods, such as A3C [46], DQN [5]va, ICM [21],
TdVN [11], and HER [30]. As shown in Fig. 7, DQN and A3C
suffer from slow convergence. It seems difficult for them to
train with sparse and binary rewards. DQN + HER also per-
formed poorly though HER could improve sample efficiency.
ICM leads to a better performance than the three methods
above, as ICM trains an agent with intrinsic curiosity-based
motivation and, thus, offers an efficient way for exploring.
TdVN showed the second best performance, benefiting from
its complicated deep Siamese actor–critic network architecture
incorporating a pretrained ResNet. With the proposed InvDM
and MgCl, either the single-branch or multibranch model
performed better than the others. The results indicate that,
by enhancing the cooperation in multigoal learning, our model
can learn multiple goals in different scenes simultaneously
with only binary reward, while yields better performance than
existing work.

D. Results of Scene Generalization

In this section, we test the scene generalization performance
of agents trained by different models. The competent models
here include Vanilla A3C, A3C + InvDM, A3C + Loop,
A3C + Mapper, and A3C + Loop + Mapper. To show the
influence of the number of rooms during the training on the
generalization performance, the number of rooms was set to 4,
8, 12, and 16 in turn, and there are five targets in each room.

Fig. 8. Scene generalization results.

We trained each model for the same 20M steps. The test was
conducted in four additional rooms, with five targets in each
room, and the average navigational success rate was used
as the performance metric. As shown in Fig. 8, the success
rate of random strategy is about 14%, which is indicated by
the black dotted line of the figure. With the increase of the
number of training scenes, the success rate of Vanilla A3C
and A3C + InvDM did not improve much, even lower than
that of the random strategy in some cases. Although InvDM
has been proven to greatly improve the speed of the training
process, it has weak generalization capability for unknown
scenes. Compared with the random strategy, Vanilla A3C,
and A3C + InvDM, the agents trained by A3C + Loop and
A3C + Mapper are more likely to succeed in the unknown test
scenes. The above results also prove that by understanding
whether the state has been experienced and by figuring out
the difference between state and goal, both path closed-
loop detection and state-target matching can improve the
generalization capability of agents. Moreover, A3C + Loop +
Mapper yielded the best generalization performance in all
cases, indicating that the two modules could be well combined.
Please refer to the website mentioned in the Abstract for the
video demonstration results.

VI. CONCLUSION

In this work, we proposed a model-embedded actor–critic
scheme to enable the agent to learn the skill of navigating to
multiple goals cooperatively. We introduced two components
to the A3C architecture: InvDM and MgCl to enhance the
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task cooperation in visual navigation. To further improve the
scene generalization capability of the agent, we designed two
additional modules, path closed-loop detection and state-target
matching, which were set as auxiliary tasks for navigation.
Experimental results on the interactive AI2-THOR platform
demonstrated the superiority of the proposed architecture over
existing methods in the goal-dependent navigation task.
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