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Abstract—Regression testing aims to check the functionality
consistency during software evolution. Although general regres-
sion testing has been extensively studied, regression testing in the
context of video games, especially Massively Multiplayer Online
Role-Playing Games (MMORPGs), is largely untouched so far.
One big challenge is that game testing requires a certain level
of intelligence in generating suitable action sequences among
the huge search space, to accomplish complex tasks in the
MMORPG. Existing game testing mainly relies on either the
manual playing or manual scripting, which are labor-intensive
and time-consuming. Even worse, it is often unable to satisfy
the frequent industrial game evolution. The recent process in
machine learning brings new opportunities for automatic game
playing and testing. In this paper, we propose a reinforcement
learning-based regression testing technique that explores differen-
tial behaviors between multiple versions of an MMORPGs such
that the potential regression bugs could be detected. The prelim-
inary evaluation on real industrial MMORPGs demonstrates the
promising of our technique.

I. INTRODUCTION

Regression testing is an important activity for software

quality assurance during software evolution, and maintenance.

Changes during software updates could be a common source of

introducing bugs, making regression testing of great importance.

As a typical software, the video game software, especially the

industrial Multiplayer Online Role-Playing Game (MMORPG),

often performs fast and frequent version updates, to fix bugs,

add new features, enhance the performance, etc.. Rapid version

changes may introduce new bugs in the new version, especially

under the fast development and release pressure. Reducing the

buggy code risk is very important for the game company as

the bugs can affect the user experience, resulting in the loss of

users and even leading to security risks and economic loss In

practice, regression testing is commonly adopted in the video

game industry and plays an important role in quality assurance

during game software evolution.

Although extensive studies have been performed for regres-

sion testing, the regression testing of video games, especially

MMORPGs (the focus of this paper), is largely untouched so

far due to its characteristics. To better understand the regression

testing activities in industrial MMORPGs, we conduct an

empirical study on three mainstream popular commercial games

*Equal contribution.

at Netease. Table I summarizes the information (from the

internal game development report) about the statistics of three

large-scale industrial MMORPGs (i.e., Justice, Revelation,
Ghost). We can see that the industrial games are often quite

complex in terms of installation size and game content (i.e.,
containing many quests). To accomplish these quests, a shortcut

strategy still needs at least 200+ hours. In particular, these

games are also constantly updated in a very fast way due to

that, 1) the complicated quests may contain bugs and need to

fix very quickly, 2) the game needs to add new features or

maintain balance to avoid the loss of users. In Netease, each

game is often updated so frequently, with 3 internal versions

per day (i.e., the version at 2:00AM, 12:00AM and 6:00PM).

Each version may contain hundreds of commits (e.g., 400+,
300+, and 100+ commits). To guarantee the quality of the game

in the fast evolution pace, Netease employed many professional

human testers, especially for some timely and hot games (e.g.,
the game Justice alone has more than 30 professional testers).

Even though, due to the huge space of MMORPGs, only the

main story of the game could be tested at a certain level. Many

bugs still remain in the code, which are often discovered by

the users after releasing.

In summary, the fast evolution of industrial MMORPGs

brings several challenges for regression testing.

• The game space is huge. To accomplish non-trivial tasks,

many user interactions (e.g., use the right skill) are required.

Existing testing techniques are often hard to generate valid

test cases (i.e., a valid sequence of operations) for games,

making the game testing largely rely on the manual play or

written scripts, where scripts can also often become unusable

when the game is updated.

• Existing white-box testing techniques [3], [14] (e.g., symbolic

execution) could capture the software differential behaviors

but they can be difficult to be applied for game testing. They

are often not scalable in the complex MMORPGs, and some

relevant states (e.g., timeout) or randomness in MMORPGs

could only be triggered at runtime.

• Moreover, for confidentiality reasons, Netease has strict

control over the access of the source code, which testers

often do not have permission to access. Thus, the game

testing process is mostly black-box.
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• Game updates are rather frequent and require efficient

methods for testing the change. For example, although there

are quite a few professional testers employed by Netease, the

regression testing is still a pain point, leaving the released

game under risks in some cases. Fully automated regression

testing of games is highly demanding.

Towards addressing these challenges, in this paper, we

propose a reinforcement learning (RL) based regression testing

technique for MMORPGs, aiming at effectively exploring the

changes of two versions of the MMORPG. The intuition is

that capturing more divergent behaviors of two versions of a

game is more likely to identify regression bugs. The essence of

our method is to train an intelligent RL policy that considers

both exploring different states between the old version and

new version (i.e., capturing the divergence) and exploiting task

accomplishment in the new version (i.e., reaching deep states).

We performed a preliminary study to demonstrate the promising

of our approach on industrial MMORPG of Netease. To the best

of our knowledge, this is the first attempt to explore automated

regression testing techniques for industrial MMORPG game

software.

II. METHODOLOGY

A. Game Playing and Regression Testing

Game playing could be well modeled as a Markov Decision

Process (MDP). At each discrete time step t, the agent observes
the current state st (e.g., the health points and magic points)

and chooses an action at (e.g., moving forward or using some

skills). After the execution of action at, the game environment

is updated to a new state st+1 (i.e., the effect of the action at).
A reward rt with regards to a specific goal (e.g., accomplishing

the task as soon as possible or losing health points as little

as possible) is calculated for the current action at at state st.
The process continues until the agent finishes the given task

or the allocated budget exhausts. The game playing process

can be represented by a sequence (s0, a0, s1, . . . , an−1, sn).
More specifically, for a game, we define its MDPM as a tuple

(S,A, r, γ), where S is a set of states of the game, A is a set

of actions, r denotes the reward function and γ ∈ (0, 1] is a
discount factor.

Definition 1 (Game Regression Testing): Given a game

M(S,A, r, γ) and its updated version M′(S ′,A′, r′, γ′), re-
gression testing aims to generate test cases that capture the

differences between the two versions as many as possible such

that the regression bugs are more likely to be detected.

Intuitively, regression testing aims at maximizing the explo-

ration of the differential behaviors of two versions of the game.

We define two forms of game version divergence between M
and M ′ as follows:

Definition 2 (State Divergence): A state s is divergent

between M and M ′ if s ∈ S ∧ s �∈ S ′ or s ∈ S ′ ∧ s �∈ S .
Definition 3 (Trace Divergence): Assume the same strategy

is adopted in playing two versions of a game, after the trace

(s0, a0, s1, . . . , an−1, sn, an) is executed, the states sn+1 and

s′n+1 are returned from two versions of the game M and M ′.
We say the trace is divergent if sn+1 �= s′n+1.

State divergence reveals the direct update, i.e., adding some

new features that belong to S ′ but not S, or removing some

features that belong to S but not S ′. For trace divergence,

both sn+1 and s′n+1 can belong to S and S ′, i.e., sn+1 ∈
S ∧ sn+1 ∈ S ′ ∧ s′n+1 ∈ S ∧ s′n+1 ∈ S ′. In this case, the state

divergence is not identified, but the update still changes the

internal behaviors.

At each state, we check whether bugs are triggered. In this

work, we mainly detect two types of bugs: the crash bugs

(i.e., the game crashes) and stuck bugs (i.e., the state cannot

be changed within a certain time), both of which could be

automated.

B. Regression Testing with Reinforcement Learning

A key challenge is how to explore the states of a game such

that the divergence could be captured. Existing techniques (e.g.,
random, breadth-first search, depth-first search) often cannot

effectively accomplish the task of the game, which requires a

certain level of intelligence, making it difficult to cover deep

states (e.g., a subtask can only be triggered after completing

another subtask).

Reinforcement learning [20] aims to train an agent interacting

with an environment to maximize expected rewards. It generates

an optimized policy to better accomplish the task of the game.

Our key insight is that we could use reinforcement learning

to train a specific policy, which can not only accomplish the

main task but also explore more divergent behaviors between

two versions of a game.

In the paper, our early attempt on game regression testing

follows the Q-learning algorithm [21], which is an off-policy

temporal difference (TD) control algorithm in reinforcement

learning. It estimates the value of executing an action a from

a given state s, which is referred to as Q-value. Q-values are

learned iteratively by updating the current Q-value estimate

towards the observed reward r and estimated utility of the next

state s′ as follows:

Q(s, a) = Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(1)

where s′ is the next state after executing the action a at state

s, r is the corresponding reward and α is the learning rate. An

episode of the training ends when the current state is a final

or terminal state (i.e., timeout, fail or success).

The state abstraction and the reward design are the two

key components of our reinforcement learning-based game

regression testing.

C. State Abstraction

Although we can construct the states with the information

of the game, an MMORPG often provides a large set of game

information, which is high-dimensional and noisy. It is also

impractical to learn directly from the raw information that

may include useless or irrelevant information for an agent to

complete the task (e.g., the wild neutral monsters, the dialogue

information between the player and the NPCs).

Following the human experience in game playing, we design

a denoising strategy to collect the key information from
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TABLE I: Complexity and Regression of Two Industrial MMMORPGs

Game Name #Registered Players Size #Quests #time(h) Update Freq. # Change #Testers

Justice (PC) 30 millions 82.4GB 15,147 200h+ 3 versions/day 400+ commits/day 30
Revelation (PC) 16 millions 27.44GB 11,000 100h+ 3 versions/day 300+ commits/day 12
Ghost (Mobile) 100 millions 2.6GB 1,000 20h+ 3 versions/day 100+ commits/day 21

the raw data, which includes three key steps: 1) omitting

task-irrelevant information with some domain knowledge; 2)

reducing dimensions by transforming feature expression; 3)

performing the interval abstraction to discretize values (e.g.,
health points). Currently, some domain knowledge are leveraged

in our current state abstraction, which needs to be customized

for different games. For example, we manually determine

which information is irrelevant. We leave the automatic state

abstraction as the future work.

D. Rewards for Regression Testing

For regression testing, the key challenge is how to define

rewards, which determine the interaction strategy of reinforce-

ment learning in the game. In general, the goal of regression

testing is to explore more divergent behaviors between two

versions. To achieve this goal, the policy at least needs to

accomplish the complex task such that deep states can be

covered. However, only accomplishing the task is not enough,

we may train a policy that tends to identify an optimal way to

accomplish the task but other diverse states may be missed. To

mitigate this problem, the policy needs to explore more diverse

behaviors of the game such that more divergent behaviors

are more likely to be reached. Due to the huge space of the

game states, improving diversity may reduce the efficiency

of detecting divergence, which is the main goal of regression

testing. In other words, the diversity-based strategy may explore

many states, which are the same between the old and the new

version. Thus, we need to give more rewards when the state

divergence or trace divergence is discovered. To address such

challenges, we propose a multi-reward fusion method that

considers the task accomplishment, the diversity (more diverse

states) and the divergence (inconsistent states) exploration.

1) Accomplishment Reward: The accomplishment reward
considers the capability of the task accomplishment, which is

calculated after the completion of each episode. The reward

of each action a at state s is calculated as:

raccomp(s, a) = β ∗m− n ∗ l (2)

where β is 0 if the task is not completed in the episode (e.g.,
timeout or fail) and 1 otherwise. m is a large reward for the

success of the task, n is a tiny penalty (i.e., 0.01)and l is the
total steps of the episode. Intuitively, if the task is completed,

a large reward is given. Meanwhile, there is a tiny penalty for

each step, i.e., the fewer steps to complete the task, the higher

the reward is.

2) Diversity Reward: Curiosity [15] has been widely used

to explore the environment and discover novel states. Here,

we compute the cumulative visited times of each state in the

whole train process instead of each episode, as the curiosity.

Thus the policy is optimized to choose the actions that could

lead to rare states. The curiosity-based reward is defined as:

rcuri(s, a) =

{
1 times(s′) = 0

1
times(s′) otherwise

(3)

where s′ is the next state after executing the action a and

times denotes the cumulative visited time of the state s′. The
diversity reward encourages to explore new states.

3) Divergence Reward: After each episode on the new

version of the game, we obtain a trajectory that is a sequence of

visited states by actions, i.e., (s0, a0, s1, . . . , sn, an, sn+1, . . .).
To check the divergence between two versions, we try to

replay the trajectory in the old version by using the same

action step by step. A divergence is triggered when either

an inconsistent state or invalid action in the old version is

reached. After a divergence is detected, we are unable to

further replay the original trajectory and the policy is then

adopted to play the games until the task is completed or failed.

Finally, we obtain another trajectory from the older version,

i.e., (s0, a0, s1, . . . , sn, an, s′n+1, . . .), where s
′
n+1 �= sn+1. We

calculate the divergence reward with the Jaccard similarity as:

rdiv(si, ai) =

{
Jaccard(trnew(si), tr

old(si)) i ≤ n
0 i > n

(4)

where tr(si) shows the sub-sequence of states after the state si
in the new or old trajectory. Intuitively, we assign a high reward

to the previous states from s0 to sn since the divergence is

triggered after these states. The following divergent states are

rewarded as 0 as such states are expected to be tested diversely

(guided by diversity reward).

Finally, three levels of rewards are fused to one reward:

r(s, a) = c0 ∗ raccomp(s, a) + c1 ∗ rcuri(s, a) + c2 ∗ rdiv(s, a)
(5)

where c0, c1 and c2 are the coefficients.

III. PRELIMINARY EVALUATION

A. Setting

To demonstrate the potential of our method, we select

one task from a commercial MMORPG as our target, which

contains 7 regression bugs. We select four baselines to perform

the comparative study:

• Random strategy, which explores the game randomly.

• Accomplishment strategy, which adopts the reinforcement

learning to explore the game with only the accomplishment

reward.

• Accomplishment+Diversity strategy, which explores the game

with accomplishment reward and diversity reward.

• Accomplishment+ Diversity+Divergence strategy, which

explores the game with all three rewards.
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(a) Results of cumulative visited states (b) Results of cumulative divergence (c) Results of cumulative regression bugs

Fig. 1: The results of regression testing with different strategies

The configuration details of the experiments are: the discount

factor γ = 0.99, the learning rate α = 0.1, the exploration rate

ε = 0.3. For the fusion, we empirically set the coefficients as:

c0 = 0.1, c1 = 0.2 and c2 = 0.2.

B. Metrics

In the experiment, we use the following four metrics for

measurement:

• Total Visited States. The number of the unique states visited

in the new version of the game.

• Total Differential States. The number of unique states (in the

new version) that could not be covered in the older version

of the game.

• Total Bugs. The number of regression bugs triggered in the

new version of the game.

C. Results

Figure 1 summarizes the results of different strategies.

Notably, each strategy is run with 50000 steps. One step

represents that the game transits from one state to another

one. During the game playing, if the target task completes or

fails, we rerun the game. The horizontal axis represents the

total number of steps.

Figure 1a shows the results of the cumulative visited states,

including the common states and differential states between the

new version and its previous version. We observe that random

strategy covers more states of the game than others. This is

reasonable since random strategy often explores meaningless

states. For example, there can be many NPCs or game zones

that are not relevant to the task. In addition, the strategy with

only accomplishment reward captures the minimum number

of states as it only considers the shortcut to complete this task.

Finally, those states, which helpful for accomplishing the task,

are assigned with high Q-values.

Figure 1b shows the results of the cumulative differential

states. Note that, the game state space is often quite huge, it

is not possible to determine whether a state is divergent (See

Definition 2). Thus, we detect the potential divergent states

by checking whether this state has been seen before. In this

way, some states may be divergent in the early stage because

it was seen in one version but not seen in a newer version.

However, they may be explored in both of the versions in the

late stage and are regarded as common states. This could be

the reason that the curve decreases sometime. The results show

that the performance of the random strategy is quite limited

in detecting differential states although it performs the best in

exploring the total states (Figure 1a). Driven by curiosity and

diversity rewards, the trained RL policy is more effective in

exploring the differential states (i.e., the red and green lines).

Figure 1c shows the results of bug detection, which confirms

the advantage of strategies guided by curiosity reward and the

diversity reward, in detecting more bugs and exploring more

differential states.

IV. RELATED WORK

Regression testing has been extensively studied, including

regression test selection [25], [4], [6], [8], [17], [28], regression

test prioritization [7], [10], [12], [18], [26] and regression

test generation [3], [14], [24], [13], [9], [16], etc.. Due to a

large number of regression tests, running the entire test suite

is time-consuming and expensive. Regression Test Selection

(RTS) selects and runs only the relevant test cases that are

likely to reveal the code changes. The test cases could be

selected based on changes of different levels, e.g., basic-block-
level [8], [17], method-level [27], file-level [6] or combination

of them [28]. Regression test prioritization [7], [10], [12], [18],

[26] orders the test suite based on some criteria such that

the test cases with higher priority are run earlier. Usually,

the test cases, which could achieve higher code coverage or

capture more differential behaviors, are given higher priority.

For game testing, there are often fewer regression test cases

as the test cases are manually designed by testers. Thus, this

paper mainly focuses on the automatic test case generation

for version inconsistent behavior detection during evolution.

Existing regression testing techniques focus on generating test

cases that can capture divergent behaviors between two versions.

Most of them are based on symbolic execution [3], [14], [24]

or dynamic fuzzing [13], [9], [16]. However, the symbolic

execution based techniques may suffer from scalability issues

while the fuzzing techniques could not generate high-quality

test cases for testing games. It is not obvious how to adapt

these techniques to the game context either.

695

Authorized licensed use limited to: Central Michigan University. Downloaded on May 14,2021 at 09:22:53 UTC from IEEE Xplore.  Restrictions apply. 



Previous works [11], [1] have shown that automated game

testing is quite challenging and still at an early state. Although

some techniques [2], [5], [19] are proposed for testing GUI-

based applications, they are still not effective for games due to

that game playing has to accomplish some hard tasks, requiring

a certain level of intelligence. Inspired by the successful

application of reinforcement learning in game playing [23]

and robot navigation [22], some recent work Wuji [29] adopts

deep reinforcement learning (DRL) to test games. Wuji, based

on the evolutionary DRL, trains multiple policies at once, which

is expensive and challenging for testing the rapid evolution of

games. Moreover, Wuji is a general-purpose technique for

testing one single version of the game while our method

focuses on testing the differential behaviors between multiple

versions, towards addressing the quality challenges during the

fast evolution of industrial game development.

V. CONCLUSION

This paper presented a learning-based automated regression

testing for game software, which leverages multiple rewards to

facilitate diverse and divergent behavior detection of two game

versions. The preliminary results demonstrated its potential in

capturing differential states and regression bugs. Our technique

also has the potential to generalize to a wide range of

applications that intrinsically requires complex interactions.
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