
Master-Slave Curriculum Design for Reinforcement Learning

Yuechen Wu, Wei Zhang∗, Ke Song
School of Control Science and Engineering, Shandong University

{wuyuechen, songke vsislab}@mail.sdu.edu.cn, davidzhangsdu@gmail.com

Abstract
Curriculum learning is often introduced as a lever-
age to improve the agent training for complex tasks,
where the goal is to generate a sequence of easi-
er subtasks for an agent to train on, such that final
performance or learning speed is improved. How-
ever, conventional curriculum is mainly designed
for one agent with fixed action space and sequen-
tial simple-to-hard training manner. Instead, we
present a novel curriculum learning strategy by in-
troducing the concept of master-slave agents and
enabling flexible action setting for agent training.
Multiple agents, referred as master agent for the
target task and slave agents for the subtasks, are
trained concurrently within different action spaces
by sharing a perception network with an asyn-
chronous strategy. Extensive evaluation on the Viz-
Doom platform demonstrates the joint learning of
master agent and slave agents mutually benefit each
other. Significant improvement is obtained over
A3C in terms of learning speed and performance.

1 Introduction
Recently, deep learning has achieved considerable success in
various fields of intelligent tasks such as navigation [Jader-
berg et al., 2016] and texture classification [Zhang et al.,
2018b]. With aid of deep learning, the Deep Q-Network
(DQN) [Mnih et al., 2015] and the asynchronous advantage
actor-critic (A3C) [Mnih et al., 2016] outperformed expert
human performance on Atari 2600 games. Levine et al. p-
resented an end-to-end scheme to learn a visuomotor control
policy for robotic grasping [Levine et al., 2016]. For the fore-
seeable future, deep reinforcement learning will to be one of
most promising parts of artificial intelligence systems.

The recent trends of reinforcement learning focus on deal-
ing with increasingly complicated tasks. However, learning
control policy directly from the complex environments with
sparse feedback is very challenging. One pioneering method
was presented in [Wu and Tian, 2017], which integrated re-
inforcement learning with curriculum learning [Jiang et al.,
2015] for the complex video game Doom, and finally won the

∗Corresponding author.

Figure 1: The proposed curriculum learning architecture. The mas-
ter and slave agents run with different frequencies in the asyn-
chronous process, where the master agent takes half of the threads
totally, while all slave agents share the rest half threads.

champion of Track1 in Visual Doom AI Competition 2016
[Kempka et al., 2016]. Andreas et al. used the curriculum
learning scheme [Bengio et al., 2009] to make their model
scale up smoothly from simple tasks to difficult ones with
short sketches [Andreas et al., 2016]. In summary, the core
idea of curriculum learning is to split particularly complex
task into smaller, easier-to-solve ones [Florensa et al., 2017;
Kumar et al., 2010]. The target agent is enabled to reject ex-
amples which it currently considers too hard, and becomes
more skilled gradually as the difficulty of the tasks increases.
However, the above reinforcement learning methods share the
following limitations. First, the subtasks in a curriculum are
all designed to train one agent (i.e., the target agent), where
the tasks mainly change in difficulty level and the goal is the
same, e.g., using a simpler map for battle in Doom. Hence,
the action space is fixed among different tasks, and the agen-
t should be trained sequentially, i.e., one task after another.
Second, when training with a simpler task of the curriculum,
the samples generated from the corresponding easier environ-
ment normally have strong correlation. Thus, the algorithm

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1523



is easily trapped into local minima, which affects the conver-
gence speed and performance seriously. All these issues pose
great challenges to the application of curriculum learning to
reinforcement learning.

To relieve these limitations, we intend to design a flexible
curriculum by introducing the concept of master-slave agents
with multiple action spaces as illustrated in Figure 1. Specif-
ically, the target task is first decomposed into a group of sub-
tasks to complete in different environments. Unlike conven-
tional curriculum, two types of agents are introduced in this
work: the master agent for the target task and the slave a-
gents for the subtasks. In general, the target task is harder
than the subtasks, and thus each slave agent is derived from
the master agent, so does the action space. Hence, the multi-
ple agents here may have different actions to learn. The slave
agents trained on the subtasks are leveraged to improve the
training of the master agent on the target task.

To transfer knowledge among different tasks more effec-
tively, all agents are trained concurrently with a shared per-
ception network [Zhang et al., 2018a] in an asynchronous
manner, which differs much from the conventional curricu-
lum learning that trains an agent one task after another. The
network parameters are updated simultaneously by the asyn-
chronous agents of different tasks. Similar to convention-
al curriculum learning, multiple auxiliary environments are
needed for subtask training. Nevertheless, the auxiliary en-
vironments here are agent-specific with different goals, and
thus the environment difference is mainly about the task goal-
s and more like inter-class difference. Hence, coupled with
the asynchronous training strategy, better exploration and ex-
ploitation could be attained by transferring the knowledge a-
mong different environments.

Evaluation is conducted on the VizDoom platform which
offers a variety of scenarios for agent training. The inputs of
the tested model are only the raw frame observations without
any other game variables revealing the internal state of the
game. A3C is employed as the baseline algorithm to build
the whole reinforcement learning framework. Experimen-
tal results on Doom show that with the proposed curriculum
learning architecture, the performance of A3C could be im-
proved significantly in both convergence rate and number of
monsters killed.

2 Related Work
In the past years, curriculum learning has been introduced
into the reinforcement learning to enable the agent to learn
an optimal policy in complex environments. Most practical
curriculum-based approaches in reinforcement learning re-
lied on pre-specified task sequences with manually designed
schedule [Karpathy and Van De Panne, 2012]. Recently,
Narvekar et al. [Narvekar et al., 2017] and Svetlik et al.
[Svetlik et al., 2017] attempted to generate the task sequence
of a curriculum automatically, and found that inappropriate
or wrongly ordered curriculum schedules may hurt the a-
gent training. To summarize, the current curriculum learn-
ing studies mainly focused on either the content/order of the
schedule or the manner to generate schedule, such as man-
ually [Narvekar et al., 2016] or automatically [Florensa et

al., 2017]. They share the similarity that the schedule was
designed for one agent with fixed action space. In contrast,
we intend to extend the curriculum learning by introducing
a master-slave agent concept which can allow flexible action
setting and training manner.

This differs from the conventional multi-agent work [Bu-
soniu et al., 2007], which aimed to train an ensemble of self-
interested and independent agents to learn their own policies
by maximizing a discounted sum of rewards. Thus, each a-
gent has to consider its teammates’ behavior and to find a
cooperative policy. Instead, the multiple agents here have the
master-slave configuration. As illustrated in Figure 3, each
slave agent is derived from the master agent. It aims to boost
the learning of the master agent, though has its own task. The
master-slave agents care trained jointly by sharing a percep-
tion network with an asynchronous manner. Also, the pro-
posed architecture is compatible to most reinforcement learn-
ing schemes and can work together at low computational cost.

The essence and purpose of our method also differ from
the conventional multi-task learning [Wilson et al., 2007;
Li et al., 2009]. For example, multiple DDPG networks were
employed in [Yang et al., 2017] to learn multiple tasks that
are equally important, such as going forward and backward.
In [Jaderberg et al., 2016], multiple auxiliary tasks and relat-
ed pseudo-rewards were exploited to facilitate the target task
training without any extra environment. In contrast, herein
a series of different subtasks and task-specific environments
are introduced (for slave agents) to optimize performance for
a specific target task (for master agent), rather than all tasks.
The slave agent interacting with agent-specific environment
was apt to receive extrinsic rewards.

Besides, the role of the subtasks in our method is differ-
ent from the hierarchical reinforcement learning. Such as in
[Tessler et al., 2017], the subtask was pre-trained as a skill
for the target agent and the skill will be reused when a similar
subtask exists. In [Kulkarni et al., 2016], subtasks were con-
structed priori for the target task and a top-level value func-
tion learns a policy over them. But in our method, subtasks
and target task were trained concurrently for different agents,
which could mutually benefit each other. Also, our subtasks
are unnecessary when the training is finished.

3 Proposed Curriculum Learning
In this section, we present a reinforcement learning architec-
ture based on A3C, and extend the curriculum learning to al-
low multiple agents with flexible action setting. As illustrated
in Figure 1, the agents are defined with the configuration of
master and slave to learn their control policies within differ-
ent action spaces. The knowledge among them is transfered
by a shared perception network with an asynchronous man-
ner. The ultimate goal is to improve the learning of the master
agent and make it perform better in the target task.

3.1 Preliminaries
Reinforcement learning [Sutton and Barto, 1998] is con-
cerned with training an agent interacting with an environment
to maximize the expected future rewards. The environments
are defined as a Markov Decision Process (MDPs), which is

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1524



Figure 2: Illustration of the proposed deep reinforcement learning model for master-slave agent training. The model consists of two parts: a
shared perception network built by CNNs and LSTM, and k decision networks with different output sizes for different actions. Note that only
one actor will be activated to choose actions in each timestep.

formalized as a tuple(s, a, r, γ), where s denotes a finite state
space, a denotes the action space, r denotes the state-reward
function and γ ∈ (0, 1] is a discount factor. A determinis-
tic policy π(a|s) maps each state to an action and defines the
behavior of the agent.

At each discrete time step t, the agent observes the state st
and chooses an action at according to its policy π(at|st). One
time step later, the agent receives a numerical reward rt and
finds itself in a new state st+1. The process continues until
the agent reaches a terminal state. The return Rt is the total
accumulated rewards from time step t. The goal of the agent
is to learn an optimal control policy π, which maximizes its
expected return until the episode ends.

A3C is an actor-critic algorithm which updates both the
policy function π(at|st; θπ) and the state-value function
V (st; θv) by n-step returns. The policy and the value func-
tion are updated after every tmax actions or when a terminal
state is reached. The total accumulated return from time step
t is defined as:

Rt =
k−1∑
i=0

γirt+i + γkV (sk+t; θv) (1)

where k can vary from state to state and is upper-bounded by
tmax.

The entropy H of the policy π is added to the objective
function to alleviate premature convergence to suboptimal de-
terministic policies. The gradient of the full objective func-
tion can be regarded as:

∇θπ logπ(at|st; θπ)(Rt − V (st; θv))

+β∇θπH(π(st; θπ)),
(2)

where β controls the strength of the entropy regularization
term.

The final gradient update rules are listed as follows:

θπ ← θπ + η∇θπ logπ(at|st; θπ)(Rt − V (st; θv))

+β∇θπH(π(st; θπ)).
(3)

θv ← θv + η∇θv (Rt − V (st; θv))
2, (4)

where η represents the learning rate.

3.2 Curriculum Design
When training an agent to perform a complex task, conven-
tional curriculum learning methods first generate a few easier
tasks (e.g., using an easier map or reducing the number of ad-
versaries), and then train the agent one by one with increasing
difficulty levels, while the actions to learn are the same.

Given a target task, we also decompose it into multiple
subtasks, however, the subtasks are coupled with additional
agents which are referred as the slave ones. Accordingly, the
original agent is regarded as the master one. The curriculum
here is designed for multiple agents to learn the correspond-
ing tasks in their own environments. Therefore, the action
spaces differ from each other as well. Taking Doom for ex-
ample shown in Figure 3, the goal of the master agent is to
kill the monsters as much as possible with less health loss.
Thus, the target task can be decomposed into three subtasks
including shooting, navigation, and collecting medkits. For
the subtask of shooting (bottom right), only monsters exist
and the corresponding slave agent is trained to learn how to
kill them only. Hence, the subtasks of a curriculum are de-
signed for the slave agents respectively (rather than the master
one), that have different actions to learn. To share the knowl-
edge among different subtasks, the slave agents are trained
jointly with the master agent in a deep model explained in the
following sections.

3.3 Architecture Design
As shown in Figure 2, we present a deep model based on the
actor-critic architecture. The input is a stack of sequential
images (e.g., four frames) captured from the environments,
which are partially observable. The model consists of two
parts: a shared perception network and k decision network-
s with different output sizes for different action spaces. The

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1525



Figure 3: Task decomposition in Doom. Top is the “Battle” where
the agent defends against adversaries while gathering health and am-
munition in a maze; Bottom left is “Collect Medkits” where the
agent gathers health kits in a square room (without navigation);
Bottom middle is “Collect Medkits and Navigate” where the agent
gathers health kits in a maze (with navigation); Bottom right is the
“Shoot” where the agent aims at shooting monsters.

perception network is composed of a four-layer convolution-
al neural network (CNN) and a long short-term memory (L-
STM) network by which the raw environment observations
can be transformed into state representations. The decision
networks have two types of outputs: policy and value. The
policy decides the action probability distribution for an agen-
t to choose, and the value is a score about the state. In the
training and testing, the environment and task obey the rule
of one-to-one correspondence. Given the observation about
an environment, only the action of corresponding task can be
predicted.

3.4 Asynchronous Learning Strategy
The proposed asynchronous learning strategy is illustrated in
Figure 1. Rather than training the agent sequentially in a cur-
riculum, the master-slave agents are trained to learn the corre-
sponding control policies concurrently with an asynchronous
manner. It is noted that the master and slave agents run with
different frequencies in the asynchronous process, where the
master agent takes half of the threads and the slave agents
share the rest half threads.

When one agent interacts with its corresponding environ-
ment, the agents for the other tasks may have not finished the
network updating yet. In a single update, the actions are se-
lected based on the predicted policy for up to tmax steps or
until a terminal state is reached. Such procedure makes the
agent receive up to tmax rewards from the environment since
last update. Then gradients are computed for n-step update
for each of the state encountered. The longest possible n-step
return is employed, i.e., a one-step update for the last state,
a two-step update for the second last state, and so on for a
total of up to tmax updates. Then, the accumulated updates
are applied in a single gradient step which is referred as a
minibatch.

Therefore, the shared perception network could learn the
state representation jointly across all data of the tasks, in-
cluding target task and subtasks. On the other hand, such

asynchronous training manner may make the perception net-
work update more frequently than the decision networks. To
address this, different learning rate setting is employed in the
experiments. The initial learning rate of the perception net-
work ηp is sampled from aLogUniform(10−4, 10−2) distri-
bution and annealed to 10−4 with the global shared counter T
over the course of training. The initial learning rates of the de-
cision networks ηdi are also sampled from this distribution but
annealed with the independent task shared counter Ti accord-
ing to the corresponding tasks, where k represents the number
of the tasks and i ∈ [1, k]. In the experiments, RMSProp was
performed to optimize the network in TensorFlow. Without
locking, the moving average of elementwise squared gradi-
ents g is shared among threads and updated asynchronously.
The standard non-centered RMSProp update with momentum
α and exploration rate ε is given by:

gnet = αgnet + (1− α)∆θ2
net (5)

θnet ← θnet − ηnet ∆θnet√
gnet+ε

(6)

where net represents the perception network or decision net-
works. Algorithm 1 gives an summary of the proposed algo-
rithm.

Algorithm 1: Master-Slave Curriculum Learning
//Assume global shared perception network parameter
vectors θp and global shared counter T = 0

//Assume global shared decision network parameter
vectors θd1 ,· · · ,θdi and global shared task counter
T1,· · · ,Ti = 0, where i ∈ [1, k]

//Assume thread-specific weights θp
′

and θd
′

i
Initialize thread step counter t← 1
while Ti 6 Thresholdi do

Reset gradients: dθp ← 0 and dθdi ← 0.
Synchronize weights θp

′
= θp and θd

′

i = θdi
tstart = t
Get state st
while terminal st or t− tstart == tmax do

Perform at according to policy π(at|st;
θp

′
, θd

′

i )
Receive reward rt and new state st+1

t← t+ 1
T ← T
Ti ← Ti + 1

end

R =

{
0 for terminal st
V (st, θ

p′ , θd
′

i ) non-terminal st
for i ∈ {t− 1,· · · ,tstart} do

R← ri + γR
Accumulate gradients wrt dθp and dθdi using
equ. 3

end
Perform asynchronous updates of θp using
dθp, ηp, and of θdi using dθdi , η

d
i .

end

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1526



4 Experimental Results
In this section, we test the proposed architecture to explore
the following questions with the aid of VizDoom platform that
uses the first-person perspective in a complex and dynamic
3D environment.

• Does the proposed curriculum improve the performance
of reinforcement learning?

• Is the master-slave agent configuration effective in cur-
riculum learning?

• What is the effect of asynchronous joint learning on
master-slave agent training?

4.1 Evaluation and Setting
As illustrated in Figure 3, four scenarios of VizDoom were
employed to train agents in the experiments as follows.

1. Collect Medkits: An agent is spawned randomly in a
square room and loses its health slowly and constant-
ly. To survive as long as possible, the agent needs to
move around and collect medkits, which appear in ran-
dom places during the episode. Each episode ends after
10500 ticks (1 second = 35 ticks) or when the agent dies.
There are three actions to learn: move forward, turn left,
and turn right.

2. Collect Medkits and Navigate: Except the agent is s-
pawned randomly in a maze, the others are the same to
those of Collect Medkits, including the actions to learn.

3. Shoot: An agent is spawned at one side of a square room,
and a stationary monster is spawned randomly along the
other side. A single hit is enough to kill the monster.
Each episode ends after 2100 ticks or when the monster
dies. There are six actions to learn: move forward, turn
left, turn right, move left, move right, and shoot.

4. Battle: An agent and the monsters are spawned random-
ly in a maze. The monsters move around in the maze,
and shoot fireballs at the agent. The agent defends a-
gainst monsters, and collects medkits and ammunition-
s, which appear randomly during the episode. Each
episode ends after 10500 ticks or when the agent dies.
The actions to learn are the same to those of Shoot.

For all experiments, we set the discount factor γ = 0.99,
the RMSProp decay factor α = 0.99, the exploration rate ε =
0.1, and the entropy regularization term β = 0.01. To reduce
the computational burden, the agent received an input every m
game frames, where m denotes the number of frames skipped.
In the experiment, we used 16 threads and performed updates
after every 80 actions (i.e., tmax = 20 and m = 4).

4.2 Effect of Curriculum on Master Agent
In this section, experiments were conducted to test and an-
alyze the proposed curriculum learning architecture against
the baseline A3C method. As shown in Figure 4, we first
train the master agent individually based on A3C for the tar-
get task. Then the master agent and the slave agents are also
jointly trained with different combinations based on the pro-
posed curriculum learning architecture.

Figure 4: Effect of curriculum to master agent by setting “Battle” as
the target task which is labeled as T. The subtasks include “Collect
Medkits”, “Collect Medkits and Navigate” and “Shoot” which are
labeled as C, CN and S.

Figure 5: Effect of curriculum to slave agents by setting “Battle” as
the target task and different subtasks as: “Collect Medkits” in (a),
“Collect Medkits and Navigate” in (b), and “Shoot” in (c).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1527



Specifically, for the target task “Battle”, the master agent
trained together with the slave agents did perform better than
the one trained individually with A3C, i.e., faster learning
speed and higher episode rewards. The best master agent
was obtained with all subtasks involved. The results demon-
strate that the slave agents could boost the master agent via
the proposed asynchronous curriculum. Also, it can be con-
cluded that the proposed reinforcement learning architecture
is more flexible and remains stable to the curriculum changes
in subtask as well as action space. It is worth noting that
the increased number of subtasks do not increase the number
of episodes needed to stabilize training. This may be ow-
ing to the perception network shared among all tasks, which
may help the agent avoid undesired actions and increase the
chance of collecting rewards during exploration.

4.3 Effect of Curriculum on Slave Agent
Figure 5(a)-(c) show the effects of the proposed curriculum
on the three subtasks. Similarly, we observed that training a
slave agent with the master agent and the other slave agents
converged faster and obtained higher rewards than training
it individually with its subtask only by A3C. This could be
referred as a byproduct of our curriculum learning algorithm.

It may be due to the following reasons: First, the subtask
is simpler and the samples for training are highly correlat-
ed, which may make reinforcement learning easily trapped
into local minimal and affect the convergence speed; Second,
additional samples could be provided from different environ-
ments to boost training; Finally, the inter-class difference a-
mong environments may encourage more exploration. For
example, the subtask “Collect Medkits” in (a) is much sim-
pler than the target task “Battle”, as the agent only needs to
learn three moving actions in a square room. After including
“Battle” as the target task for joint training, the performance
of “Collect Medkits” was improved significantly.

4.4 Discuss on Master-Slave Configuration
Additional experiments were conducted to further validate
the master-slave configuration as illustrated in Figure 6. First,
since the subtask “Collect Medkits” is derived partially from
the “Collect Medkits and Navigate”, where the agent al-
so needs to navigate in a maze besides collecting medkits.
Hence, we can set the “Collect Medkits and Navigate” as the
target task to train a master agent, and “Collect Medkits” as
a subtask to train a slave agent. Also, the subtask “Collect
Medkits” is replaced by “Shoot” to discuss the difference.

It can be concluded that training “Collect Medkits and Nav-
igate” with “Collect Medkits” performed better than individ-
ual training with A3C. Since the two environments are simi-
lar and not much additional rewards can be yielded, the im-
provement is not that evident as most above results. Besides,
we also observed that the joint training with “Shoot” did not
produce any gains and the algorithm even cannot reach con-
vergence. This is because these two tasks are completely d-
ifferent and can be regarded as parallel ones, which cannot
satisfy the our definition on master and slave. What we stress
here is that the the slave agent should originate from the mas-
ter agent, so does the tasks. Hence, appropriate master-slave
configuration is desired for a good curriculum.

Figure 6: Analysis on master-slave configuration by setting “Col-
lect Medkits and Navigate” as the target task (originally subtask 2).
The original Subtask 1 “Collect Medkits” and Subtask 3 “Shoot” are
included to train the slave agents, respectively.

Frags Items
Target Task 52.2 9.6

Target Task+Subtask 1 64.2 27.1
Target Task+Subtask 2 65.1 21.2
Target Task+Subtask 3 79.4 18.5

Target Task+Subtask 1-3 82.9 31.6

Table 1: Performance evaluation on “Battle” in Item and Frag.

4.5 Performance Evaluation on Battle

The performance of agent training on “Battle” could be eval-
uated with two measures: Item (number of medkits and am-
munitions picked) and Frag (number of monsters killed). Ta-
ble 1 reports the performance of the proposed architecture for
training an agent in “Battle”, where each fully trained agent
was tested for five thousands episodes. The average Item and
Frag were reported in the table. Apparently, benefiting from
curriculum learning with a slave agent, the capability of the
master agent for a specific task was enhanced. For example,
assisted by the shooting-learner with subtask 3, the master
agent becomes better at killing monsters and yielded high-
er Frag counts than training itself individually. Meanwhile,
it was also improved at collecting medkits and ammunitions,
when jointly training with subtask 1 and subtask 2. Similarly,
the best agent was obtained when all subtasks were learned
concurrently with the proposed asynchronous curriculum.

5 Conclusions

In this paper, we presented a new curriculum learning archi-
tecture and introduced it to A3C to train agents in complex
tasks. The proposed curriculum was produced by decompos-
ing the target task into related subtasks coupled with multiple
auxiliary agents referred as slave agents with flexible action
setting. To transfer the knowledge among different tasks and
boost the master agent, a shared perception network was pro-
posed, and optimized concurrently by all agents with an asyn-
chronous manner. Results on Doom demonstrated the effec-
tiveness of the proposed master-slave curriculum strategy.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1528



Acknowledgements
This work was supported by the NSFC Grant
No.61573222, Shenzhen Future Industry Special Fund
JCYJ20160331174228600, Major Research Program of
Shandong Province 2015ZDXX0801A02, National Key
Research and Development Plan of China under Grant
2017YFB1300205 and Fundamental Research Funds of
Shandong University 2016JC014.

References
[Andreas et al., 2016] Jacob Andreas, Dan Klein, and

Sergey Levine. Modular multitask reinforcement learning
with policy sketches. arXiv preprint arXiv:1611.01796,
2016.

[Bengio et al., 2009] Yoshua Bengio, Jérôme Louradour,
Ronan Collobert, and Jason Weston. Curriculum learning.
In ICML, pages 41–48, 2009.

[Busoniu et al., 2007] Lucian Busoniu, Robert Babuska, and
Bart De Schutter. Multi-agent reinforcement learning: A
survey. In International Conference on Control, Automa-
tion, Robotics and Vision, pages 1–6, 2007.

[Florensa et al., 2017] Carlos Florensa, David Held, Markus
Wulfmeier, and Pieter Abbeel. Reverse curriculum gen-
eration for reinforcement learning. arXiv preprint arX-
iv:1707.05300, 2017.

[Jaderberg et al., 2016] Max Jaderberg, Volodymyr Mnih,
Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[Jiang et al., 2015] Lu Jiang, Deyu Meng, Qian Zhao,
Shiguang Shan, and Alexander G Hauptmann. Self-paced
curriculum learning. In AAAI, page 6, 2015.

[Karpathy and Van De Panne, 2012] Andrej Karpathy and
Michiel Van De Panne. Curriculum learning for motor
skills. In Canadian Conference on Artificial Intelligence,
pages 325–330, 2012.

[Kempka et al., 2016] Michał Kempka, Marek Wydmuch,
Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
Vizdoom: A doom-based ai research platform for visu-
al reinforcement learning. In Computational Intelligence
and Games (CIG), 2016 IEEE Conference on, pages 1–8,
2016.

[Kulkarni et al., 2016] Tejas D Kulkarni, Karthik
Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In NIPS,
pages 3675–3683, 2016.

[Kumar et al., 2010] M Pawan Kumar, Benjamin Packer, and
Daphne Koller. Self-paced learning for latent variable
models. In NIPS, pages 1189–1197, 2010.

[Levine et al., 2016] Sergey Levine, Peter Pastor, Alex
Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learn-
ing hand-eye coordination for robotic grasping with deep

learning and large-scale data collection. The International
Journal of Robotics Research, 2016.

[Li et al., 2009] Hui Li, Xuejun Liao, and Lawrence Carin.
Multi-task reinforcement learning in partially observable
stochastic environments. Journal of Machine Learning Re-
search, 2009.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
ICML, pages 1928–1937, 2016.

[Narvekar et al., 2016] Sanmit Narvekar, Jivko Sinapov,
Matteo Leonetti, and Peter Stone. Source task creation for
curriculum learning. In AAMAS, pages 566–574, 2016.

[Narvekar et al., 2017] Sanmit Narvekar, Jivko Sinapov, and
Peter Stone. Autonomous task sequencing for customized
curriculum design in reinforcement learning. In IJCAI,
pages 2536–2542, 2017.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press Cambridge, 1998.

[Svetlik et al., 2017] Maxwell Svetlik, Matteo Leonetti,
Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone.
Automatic curriculum graph generation for reinforcement
learning agents. In AAAI, pages 2590–2596, 2017.

[Tessler et al., 2017] Chen Tessler, Shahar Givony, Tom Za-
havy, Daniel J Mankowitz, and Shie Mannor. A deep hi-
erarchical approach to lifelong learning in minecraft. In
AAAI, volume 3, page 6, 2017.

[Wilson et al., 2007] Aaron Wilson, Alan Fern, Soumya
Ray, and Prasad Tadepalli. Multi-task reinforcement learn-
ing: a hierarchical bayesian approach. In ICML, pages
1015–1022, 2007.

[Wu and Tian, 2017] Yuxin Wu and Yuandong Tian. Train-
ing agent for first-person shooter game with actor-critic
curriculum learning. ICLR, 2017.

[Yang et al., 2017] Zhaoyang Yang, Kathryn Merrick, Hus-
sein Abbass, and Lianwen Jin. Multi-task deep reinforce-
ment learning for continuous action control. In IJCAI,
pages 3301–3307, 2017.

[Zhang et al., 2018a] Wei Zhang, Qi Chen, Weidong Zhang,
and Xuanyu He. Long-range terrain perception using con-
volutional neural networks. Neurocomputing, 275:781–
787, 2018.

[Zhang et al., 2018b] Wei Zhang, Weidong Zhang, Kan Liu,
and Jason Gu. A feature descriptor based on local normal-
ized difference for real-world texture classification. IEEE
Transactions on Multimedia, 20(4):880–888, 2018.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1529


