
GBGallery: A benchmark and framework for game testing

Zhuo Li1 · Yuechen Wu2 · Lei Ma1,3,4 · Xiaofei Xie5 · Yingfeng Chen2 · Changjie Fan2

1 Kyushu University, Fukuoka, Japan

2 NetEase Fuxi AI Lab, Hangzhou, China

3 University of Alberta, Edmonton, Canada

4 Alberta Machine Intelligence Institute, Edmonton, Canada

5 Singapore Management University, Singapore, Singapore

© The Author(s)

Published in Empirical Software Engineering, 2022, 27(6), Article number 140. DOI:
10.1007/s10664-022-10158-x

Abstract: Software bug database and benchmark are the wheels of advancing automated software
testing. In practice, real bugs often occur sparsely relative to the amount of software code, the extraction
and curation of which are quite labor-intensive but can be essential to facilitate the innovation of testing
techniques. Over the past decade, several milestones have been made to construct bug databases,
pushing the progress of automated software testing research. However, up to the present, it still lacks a
real bug database and benchmark for game software, making current game testing research mostly
stagnant. The missing of bug database and framework greatly limits the development of automated
game testing techniques. To bridge this gap, we first perform large-scale real bug collection and manual
analysis from 5 large commercial games, with a total of more than 250,000 lines of code. Based on this,
we propose GBGallery, a game bug database and an extensible framework, to enable automated game
testing research. In its initial version, GBGallery contains 76 real bugs from 5 games and incorporates
5 state-of-the-art testing techniques for comparative study as a baseline for further research. With
GBGallery, we perform large-scale empirical studies and find that the current automated game testing
is still at an early stage, where new testing techniques for game software should be extensively
investigated. We make GBGallery publicly available, hoping to facilitate the game testing research.

Keywords: Game testing, Bug database, Automated testing, Deep reinforcement learning

1 Introduction

With the rapid technology evolution (e.g., software, hardware) over the past decades, game software
has already become an essential part of our daily life. According to the Newzoo Global Games Market
Report (Newzoo 2020), the game industry will generate $159.3

Xiaofei Xie email: xfxie@smu.edu.sg

 140 Page 2 of 27 Empir Software Eng (2022) 27:140

billion annual revenues with over 3 billion global game players by the end of 2020. As a
core problem and pain point of the game industry, the quality issues in the game software
can post risks, causing negative user experience, losing user confidence, leading to financial
losses and even severe security accidents. Therefore, ensuring the quality of game software
is of great importance, for which testing is still a de facto standard in the game industry.

However, the current industrial game software testing exhibits many challenges. Game
software is often highly interactive, dynamic, and non-deterministic. A good tester often
requires having a certain level of intelligent strategy to perform sequential actions cleverly
to reach the state, where a bug potentially lies, among the huge game state space. What
makes it even harder is that industrial games (especially the recent games) are often quite
large and complex. The modern game software also evolves at a rather rapid pace, often
ranging from daily to weekly. Although game companies do hire quite a lot of professional
human players as testers to perform testing activities before releasing, it is labor-intensive
and still far from being enough under the time pressure, leaving many bugs being discovered
by the users after releasing. Therefore, automated game testing techniques and tool support
are highly desirable, and oftentimes can be essential, especially with the increase of game
complexity and frequent evolution.

We have witnessed the leap of automated testing in the past 30 years with many state-of-
the-art automated testing techniques proposed (e.g., random testing, search-based testing,
symbolic execution) and tools available (e.g., Randoop (Pacheco and Ernst 2007), Evo-
Suite (Fraser and Arcuri 2011), KLEE (Cadar et al. 2008)). Multiple bug databases were
also proposed (e.g., iBug (Dallmeier and Zimmermann 2007), Defects4J (Just et al. 2014)),
which play an important role in accelerating the development of automated testing tech-
niques. However, even until this moment, little progress has been made on automated game
testing, and to the best of our knowledge, no game bug database is publicly available.

To bridge this gap and further ignite game testing research towards addressing the long-
standing industrial pain point and demand, in this paper, we made substantial efforts to
initiate the construction of a real game bug database (containing 76 real game bugs) and
automated framework (with 5 current state-of-the-art automated techniques for game test-
ing), named GBGallery, to enable automated game testing research and support further
in-depth studies. In particular, the real game bugs are manually collected from 5 industrial
games of different types developed by NetEase. Together with professional game devel-
opers at NetEase, we made careful collection, analysis, classification of the real bugs, and
integrate them into a bug database. Each bug is accompanied by at least one manual test
case, allowing the bugs to be reproduced. GBGallery also enables the reproducible study of
automated game testing. We also integrate 5 current state-of-the-art automated game testing
techniques into GBGallery framework for comparative study and as a baseline for further
research. Both bug database and automated framework are designed to be extensible to
support further automated game testing research.

With GBGallery, we also perform a large-scale empirical study to investigate and bench-
mark the current automated techniques for game testing. In particular, we mainly investigate
the following research questions:

– RQ1 (Statement and Branch Coverage): How much statement and branch coverage
can be achieved by current automated game testing techniques?

– RQ2 (State Coverage): How many game states can be covered by different testing
techniques?

– RQ3 (Bug Detection): How effective are the current automated testing techniques in
detecting real game bugs?

Empir Software Eng (2022) 27:140 Page 3 of 27 140

– RQ4 (Correlation): Is there a positive correlation between the achieved coverage (i.e.,
statement, branch, state coverage) and game bug detection?

– RQ5 (Missed Bugs):What can be the common reasons that game bugs are not detected
by existing automated testing techniques?

Through answering these questions, we aim to understand the current status of automated
game testing, and provide useful findings for further game testing research. For example, our
study reveals that the statement and branch coverage are rather weak indicators of game
testing sufficiency, the number of covered game states can better reflect the exploration
capability of the game testing techniques, existing automated game testing techniques
can detect a certain number of bugs but are still limited and struggling to covering corner-
case bugs. Our study also reveals that the state coverage is more strongly co-related to
bug detection capabilities than statement and branch coverage. Furthermore, our in-depth
manual analysis on bugs, which are not covered by existing automated testing techniques,
reveals that although many portions of game code fragments are relatively easy to be cov-
ered, the game state exploration capability of existing automated testing techniques is still
limited. The evaluation results confirm that testing strategy intelligence can be particularly
important in games software, calling the attention of researchers and practitioners for further
investigation. Our automated framework GBGallery is expected to directly enable several
follow-up research, e.g., automated game test case generation, game testing criteria design,
fault localization, repair, etc.

In summary, this paper makes the following contributions:

– We spent a large amount of effort on manual analysis of 5 commercial games at
NetEase, and collected 76 real game bugs under 5 categories, based on which we
construct a game bug database.

– We propose and implement an extensible framework, incorporating both the bug
database and 5 state-of-the-art automated game testing techniques.

– We also perform a large-scale empirical study and benchmark the current game testing
techniques, in terms of code coverage, state coverage, bug detection capability, and
investigate their correlations.

– We further perform in-depth analysis on those bugs missed by existing automated
game testing techniques, and pinpoint the challenges and opportunities for further game
testing research.

GBGallery and the study results are made publicly available at the accompanying
website of this paper, https://sites.google.com/view/gbgallery.

2 Related work

Although automated software testing achieved quite a lot of progress over the past 30
years, little progress has been made on automated game testing in public from the research
community. This section summarizes the related work to this paper.

2.1 Software bug database

Software bug database plays an important role in pushing testing techniques forward. The
early Siemens benchmark suite provides bugs from 7 small C programs, ranging from
141 to 512 lines of code. These bugs are manually injected and are similar to simple
mutations (Hutchins et al. 1994). Software-artifact infrastructure repository(SIR) (Do et al.

https://sites.google.com/view/gbgallery

 140 Page 4 of 27 Empir Software Eng (2022) 27:140

2005), which is a milestone work maintained for more than 10 years, contains 85 projects
written in C, C++, Java, PHP, C#, etc. , where most of the bugs are manually seeded or by
mutations.

Another important work iBugs (Dallmeier and Zimmermann 2007) provides a real bugs
database of Java programs, with a benchmark specially focused for fault localization, con-
taining 233 bugs with exposing test cases. A more recent milestone work Defects4J (Just
et al. 2014), a real bug database and framework, leads the trend of software quality assur-
ance studies on real bugs. It has been updating for more than 5 years since its initial released
version containing 5 programs with 357 bugs. The current version Defects4J 2.0 contains 17
projects with 835 bugs, broadly impacting many recent works (e.g., automated testing stud-
ies (Shamshiri et al. 2015; Papadakis et al. 2018), fault localization (Pearson et al. 2017),
static application programming interfaces (API) testing such as MUBench (Amann et al.
2016) and MUC (Amann et al. 2018), repair (Liu et al. 2019; Madeiral et al. 2019a)) in
the software engineering community. Bugs.jar (Saha et al. 2018) and Bears (Madeiral et al.
2019b) also proposed advanced bug benchmarks that can be used for automated Java soft-
ware testing. Different from these works, we propose a database that focuses on game bugs,
which not only contains implementation bugs, but also game logic and game balance bugs.

Although in the past there are public game bug log platform (Buglog 2015) that provides
to host and track the game bugs, due to the lack of game environments and test cases, these
bugs are rather difficult to be analyzed and automatically reproduced. In GBGallery, we
intend not only to provide curation of game bugs, but also game entities, oracles, test cases,
as well as current state-of-the-art automated game testing techniques, to enable research on
automated testing and analysis of game software.

2.2 Game testing

Khalid et al. (2014) conduct the user review study from 99 mobile games, which found
that most negative reviews come from a small subset of devices due to the lack of testing.
Iftikhar et al. (2015) proposes a UML-based model-based method to support system-level
game testing. They manually construct and use the model to generate and execute test
cases. However, manual modeling is labor-intensive and difficult to scale up to the cur-
rent large size industrial games under a fast evolution pace. Aleem et al. (2016) conduct a
quantitative survey to identify key developer’s factors for a successful game development
process. Lin et al. (2017) and Lovreto et al. (2018) point out that most popular games on
the market in fact are in the lack of sufficient testing. Borrelli et al. (2020) demonstrated
that game bugs can be caused by the game design and bad code smells. Wu et al. (2020)
apply a reinforcement learning-based regression testing to explore differential behaviors
between multiple versions of multiplayer online role-playing games (MMORPG) for detect-
ing potential regression bugs. Most of these works indicate that manual testing and ad-hoc
exploratory testing still play the predominant role for current game testing but are rather
costly. It might be tempted to think that game testing is very similar to simple GUI test-
ing (Banerjee et al. 2013), which also performs extensive interactions. However, different
from simple GUI testing and other bug trackers, game software is often rendered by using
game engines with many consecutive tightly connected scenes, instead of traditional GUI
widgets. In other words, for effective game testing, a tester needs to reach a certain level
of intelligence and expertise (i.e. policy) in playing these games, e.g., reaching more deep
game states and scenes. Otherwise, the diverse game states containing hidden bugs will not
be covered.

Empir Software Eng (2022) 27:140 Page 5 of 27 140

Recently, leveraging artificial intelligence (AI) to test games is being paid more attention
and explored (Nordin et al. 2018). With the recent progress in deep reinforcement learn-
ing (DRL) (Mnih et al. 2015), automatically training an agent (policy) to play the game,
which exhibits a certain level of intelligence, becomes possible. Some open platforms (e.g.,
OpenAI Gym (Brockman et al. 2016)) were proposed and become the foundation to train
advanced agent policy to better complete the game. However, training an agent to complete
a game scenario and to detect game software bugs is different. An agent that is capable to
complete the game is not necessarily able to detect the bugs, since the bugs might not be
contained in the policy action (frequently visited states) scope of the agent.

In this work, we aim to construct a game bug database and automated framework to
enable automated game testing research. Besides the collection and analysis of real game
bugs from NetEase, we also incorporate 5 diverse game testing strategies, and perform com-
parative studies to benchmark the current automated game testing techniques to identify the
challenges and opportunities in automated game testing.

3 Design of GBGallery

Figure 1 summarizes the overview of this paper that includes 3 main components: 1) the
game collection including the issue collection and bug selection, 2) the game bug database
includingGBGallery framework construction and 3) a large-scale empirical study on exiting
game testing techniques. In particular, at its early stage, the initial version of GBGallery
contains 5 industrial games from NetEase. Overall, we spend a lot of manual effort on the
bug analysis and collection based on the 5 game commit histories, issue lists, product quality
management reports and other records of game development. Eventually, 76 real bugs were
selected and we manually injected them into the 5 corresponding games, forming the game
bug database. In this process, lots of engineering work was required for building GBGallery
such as history bug analysis, bug injection and reproducing, framework construction, which
takes more than 6 man-months efforts.

Based on the bug database, we further propose an automated framework to enable the
reproducible study of game testing research. The framework is designed by taking usabil-
ity, flexibility, and extensibility into consideration. It provides multiple interfaces (i.e. ,
command-line interface (CLI), graphic user interface (GUI), reinforcement learning inter-
face), which allows flexible configuration on bugs, oracles, etc. It also supports essential
analytics for game testing, e.g., statement coverage, branch coverage, state coverage, bug

Fig. 1 The overview and summary of GBGallery, including game bug database construction, game testing
framework construction, and empirical studies for benchmarking game testing techniques

 140 Page 6 of 27 Empir Software Eng (2022) 27:140

detection, and incorporates 5 current automated game testing techniques for comparative
studies. In addition, the GBGallery framework is extensible, where new game bugs or
game testing techniques can be easily integrated into GBGallery. We further perform large-
scale empirical studies to evaluate different game testing techniques to identify the main
challenges and potential opportunities, providing the basics and guidance for further game
testing research.

3.1 Subject game collection

To create a representative game bug database, the subject games and bugs are the most
important factors. Although we initially intended to also include publicly available open-
source games, our early attempts to collect open-source games found that most open-source
games are not mature and ready for game bug database inclusion, which has few bug records
and relevant information. Thus, we selected 5 commercial games fromNetEase (see Table 1)
as the subjects, which contain well-maintained game development information, e.g., source
code, quality records and issues from the bug tracking systems. These games were selected
based on the following rules: 1) a candidate game should have a bug tracking repository
that is well maintained such that we can easily analyze the previous issues. This enables to
increase the selection opportunity for subject bugs in GBGallery; 2) the selected games can
be granted open access by NetEase considering the commercial regulation and policy in the
company; 3) we consider the size of the game and the complexity of bug analysis. Game
products with too high complexity often require too much manual effort for analysis, which
can be difficult to complete within the reasonable time. On the other hand, games that are
too small or simple often do not have many bugs for injection. Moreover, since there are
often a number of internal game versions for a commercial game, we only select one internal
version that is representative, stable and easy to integrate the game bugs.

Specifically, Fever Basketball (FB), Tower Defense (TD), and Tank are currently active
in the commercial operation status, which forces us only be able to release the binary code
based on the company’s rules. For A Chinese Ghost Story (CGS) and Justice Online (JO),
although they are currently popular and there are quite lots of users, we eventually obtained
the permission to release the source code of a part of the game to be included in GBGallery,
i.e. , typical scenarios of battles and mission scenes in the game.

Table 1 summarizes subject game information. Column #Tot Issues and Column
#Sel Issues show the number of history issues and selected issues over all the analyzed
documents (i.e. , commit histories, quality assurance records, product reports, bug tracking
system and meeting records), respectively. We eventually found more than 11,000 history
bugs of JO and 4,400 bugs of CGS, but due to the size of the granted game versions1, our
study considered 120 and 113 issues from the issue histories of JO and CGS, respectively.
These games were developed with a mixture of Python, Lua, C++, Visual Basic and C#
code. In particular, the information processing and network data flow control of all games
are developed in Python. Other game modules such as major logic, graphic rendering and
game resource loading are mainly built with Python, Lua, C++, Visual Basic and C#. Most
of the game bugs are distributed in those modules developed by C# and Python, which are
mainly used to construct the game logic and control system.

A brief description of each game is summarized as follows.

1The full game version is not granted due to the permission restriction.

Empir Software Eng (2022) 27:140 Page 7 of 27 140

Table 1 Subject game information of GBGallery

Game Programming language #LOC #Tot Issues #Sel Issues

Fever basketball C#, Python, Lua 229,103 4,903 67

Justice online C#, Python 1,697 120 19

A Chinese ghost story C#, Python 1,271 113 15

Tower defense C#, Python, VB 16,861 1,604 28

Tank C#, Python, C++ 8,053 691 14

– Fever Basketball (FB): An online basketball competition game that allows two teams
to play against each other in a half court, where each team has 3 players. A user con-
trols one of the players to perform certain actions (e.g., ball passing, shooting, defense,
rebound, etc.). FB also involves builtin-AI to collaborate with players. Each team needs
to score as much as possible to defeat its opponents.

– Justice Online (JO): A large-scale and popular MMORPG currently with over 1 mil-
lion peak daily active users. This game has rather diverse elements, including a complex
task dispatch system and a variety of props. For JO, bugs usually occur in the middle to
complete a game mission, e.g., prop trading, mission acquisition, mission update, etc.
Together with the JO game developers, we select 2 representative missions in this game
and develop a mirroring open-source version.

– A Chinese Ghost Story (CGS): CGS is an online combat scene role-playing game
(RPG). We follow a similar process as JO, select 3 different professions and develop the
mirroring open-source version (a representative combat instance from the full game)
for its inclusion into GBGallery.

– Tower Defense (TD): A tower defense game with independent client and server, devel-
oped in C#, Python and Visual Basic. TD requires players to fight against builtin-AI or
other online players, and to defend against monsters attacks by building more towers.
The game logic is rather complex and requires players to balance between the number
and quality of defense towers properly.

– Tank: This is a tank battle game, in which players can choose a variety of types of tanks
and control a tank to attack other tanks that are built-in non-player characters (NPC).
Each tank has 3 different attacking skills that can be used by the player. In addition, the
moving direction of the tank is not limited to only up, down, left, and right, but can be
in a smooth 360-degree direction.

3.2 Bug collection and bug database construction

We select the bugs based on the following steps: 1) we try our best to collect issues as more
as possible, which are from the internal quality records, bug trackers, commit history, prod-
uct development documents and meeting minutes; 2) we manually analyze and select issues
which were relevant to the game implementation. Specifically, the selected bugs should
have been successfully fixed, since we intend to incorporate both the buggy versions and
corresponding fixed versions; 3) we also remove the bugs that are relevant to sensitive func-
tions with the commercial restrictions of the company (e.g., the payment process); 4) we
only select bugs that were compatible with the game versions that can be accessible; 5) we
address disagreements by voting and seeking advice from professional game developers and
teams.

 140 Page 8 of 27 Empir Software Eng (2022) 27:140

After these steps, the selected issues have been reduced a lot and some categories of bugs
cannot be injected into the games. Specifically, in FB, we were granted a game version that
can only support several basic roles, and bugs that related to other roles (e.g., customized
roles with different clothing and skills) were excluded, thus most of the game bugs based
on the customized roles have to be removed as well. In JO and CGS, we were granted
the mirroring open-source versions that contain 2 representative missions and 3 different
professions, respectively. Therefore the selection scopes of game issues were limited to
those bugs related to the granted game versions, which reduces the number of injected game
bugs. For example, we cannot inject the Display bugs into these 2 games since the selected
game versions do not include the GUI modules. In TD and Tank, although we obtained a
complete latest game version, these 2 games were developed 5 years ago, we can access the
issue information but cannot find some related programs and resources (e.g., old database)
due to the updates of game versions. It is worth mentioning that the updates between the
buggy version and the fixed version may be quite large, e.g., the framework update, game
engine update, new data types and structure, new elements and objects. Additionally, in all
games, many of bugs were security-sensitive and related to the payment system, commercial
events (e.g., game character discount sales in Christmas), which post concerns for opening
and therefore were excluded.

We performed an in-depth analysis of the selected issues and evaluated the difficulty of
injecting corresponding bugs into the automated framework. We select one version that was
more suitable to inject these bugs. Although all the selected issues are selected from the 5
games, some of them are incompatible with the selected version. Specifically, the update
between the buggy version and the selected version may be quite large, e.g., the framework
update, game engine update, new data structure and objects design. Thus, these bugs are
difficult to be injected into the version and we remove them. Finally, we include 76 bugs
in GBGallery, which can be inserted and reproduced in the selected version. It is worth
mentioning that we used collective voting when there are some disagreements in the bug
injection.

We analyzed the triggering condition of each bug and reproduced them in the target
version. Specifically, we inserted the bugs in 3 different ways: 1) some bugs can be triggered
only if the corresponding code snippet is covered and executed such as game display bugs,
crash and stuck bugs. For these bugs, we manually extracted the buggy code snippets from
the commit history, inserted it into the code file (mainly C# and Python files) besides the
fixed code snippet, and use a switch (i.e. , a Boolean variable) to control the program logic
and determine if the bug can take effect; 2) Some bugs break the game logic and balance
because the wrong data of a critical attribute has been loaded (e.g., attack value, number of
reward coin, cool down time of a skill, etc.). These data are not stored in program files but
in data files such as game design tables, so we modified the corresponding data to trigger
the bugs; 3) Some bugs have triggered conditions conflict with others (e.g., 2 bugs are
dependent and affect the same module), we manually revised the game code and make sure
these bugs can be triggered in the same game version independently. All the injected bugs
are tested and manually checked to ensure that the insertion operation is correct, effective,
and reproducible.

Overall, there are a total of 6 people including 3 professional game developers from
NetEase in our work. We spent more than 6 man-months effort to build the game testing
framework including bug collection, analysis and framework development. Specifically, we
spent 1 man-month effort to select games, analyze the issues and collect bugs. Then, we
spent 2 man-months effort to analyze the bugs including investigating the bug video and

Empir Software Eng (2022) 27:140 Page 9 of 27 140

report, and selecting the suitable game versions for injecting these bugs. Finally, we took
another 3 man-months to inject and reproduce these bugs, develop the functionality of the
framework (e.g., test case replay, RL interfaces, testing baselines). This whole process is
rather time-consuming and requires a lot of engineering effort.

Table 2 summarizes the distribution of bugs in these games. To better understand these
bugs, we summarized these bugs into 5 categories. The reason of introducing the categories
of bugs into GBGallery are: 1) these categories are defined by the game experts. They cover
the common game bugs in NetEase and have high priority in the company. 2) Such cate-
gories correspond to the oracles, where different types of bugs can be captured by different
oracles.

– Crash: The game exits abnormally when these bugs are triggered. The crash bugs may
be caused by division by zero, memory management, object recycling, etc. Crash is one
of the most critical bugs that can introduce bad experience and security issues.

– Stuck: The graphical user interface (GUI) or background service is stuck, preventing
the user from continuing. Our collected stuck bugs are largely caused by the delayed
response, the infinite loop, game design, and etc.

– Game logic: Except for crash bugs and stuck bugs that are relatively easier to observe,
the collected real bugs contain many logic bugs that are difficult to discover by testers
or perceived by players. For example, some skills do not take effect under the corner
case; Some game states could not be reached; Some actions might violate the game’s
setting or some abnormalities caused by improper decimal truncation.

– Game Balance: Game balance issues are non-functional bugs, which may affect the
experience of players. The balance bugs are usually caused by poor design or improper
difficulty setting. Specifically, if some tasks are too hard (e.g., the monsters are too
strong to defeat), players may lose confidence and give up the game. On the contrary, if
a task is too easy, the user can quickly complete the game and lose interest. The Game
Balance bugs in GBGallery are usually caused by the unsuitable game configuration
(e.g., the configurable parameters for the monster, attack speed and attack effects).

– Display: There are some rendering issues including GUI or audio playing, which may
or may not affect the normal playing of games. For example, some displayed issues
may be caused by the inconsistency between the game client side and server side, the
resource files loading failure and etc.

3.3 GBGallery framework design and implementation

Based on the constructed game bug database, we build an automated and extensible frame-
work, named GBGallery, to enable reproducible game testing. In general, GBGallery

Table 2 Inserted bugs from selected issues on each game

Types FB JO CGS TD Tank Total

Crash 2 – 1 5 2 10

Stuck 3 – – 2 2 7

Logic 11 8 4 11 5 39

Balance 2 3 4 4 2 15

Display 3 – – 2 – 5

Total 21 11 9 24 11 76

 140 Page 10 of 27 Empir Software Eng (2022) 27:140

framework is designed with the following properties: 1) detailed introductions and docu-
ments to make sure users can access and use the framework with less effort, 2) flexible bug
configuration, i.e. , a bug can be easily configured to be turned on or off, 3) the packaged
execution environment for all 5 games which makes it easier to use, 4) bugs are repro-
ducible with accompanying tests, 5) the flexible interfaces (e.g., RL, search-based) for users
to apply the existing DRL methods and integrate newly proposed testing techniques, 6) the
state-of-the-art game testing methods can be easily integrated and compared, 7) different
kinds of oracles which are used to test if the bugs can be detected and 8) a detailed public
repository contains the issue list and other information to ease the usage.

Introduction Documents. We developed the documents for GBGallery including the
tutorial for game environment setup, game program introduction, and the usage of the
game testing framework.

Configurable Bugs. In our bug database, for each game, we integrate all the selected
bugs into a single clean game version. We adopt a fined-grained flag-based approach,
widely used in some software product lines, to control whether the faulty relevant code
fragments are enabled or not. This makes our framework flexible in controlling each bug
activation status in a fine-grained way. In particular, for each game, we provide a bug
configuration file and a Boolean flag parameter to configure whether the bug is turned
on or off for analysis.

Unified Environment. We have packaged the game in an execution environment. To be
specific, FB, TD and Tank have the compiled client which must be executed on MS-
Windows system, the other games and modules of GBGallery can be executed both on
MS-Windows and UNIX-style systems, such as the game servers and testing frameworks.

Reproducible Tests. As a shred of important evidence to confirm the existence and
enable bug investigation, in GBGallery, we provide at least one test for each bug, which
enables bug reproducing and further comparative testing analysis. To better support the
analysis of tests generated by automated tools, we provide the functionality to replay a
given test case (action sequence) on the game, where the replay supports both GUI and
CLI to enable the observation of concrete execution and in-depth investigation by users.

Game State Abstraction and Reinforcement Learning Interfaces. A typical RL envi-
ronment includes state acquisition, action input, reward acquisition, game reset, and etc.
. Among these, the design of game state representation can be a key issue for efficient
game testing and RL strategy learning. Existing RL frameworks (e.g., OpenAI Gym)
mostly adopt 2 ways for game states representation: image-based states (Mnih et al.
2013) and vector-based states (Brockman et al. 2016). In GBGallery, we used vector-
based states representation, that is, interval status of the game environments such as
health points (HP), magic points (MP), position of the player/NPC and the time used,
were sequentially summarized as a vector. The information in the state vectors can help
to tune the deep neural network and finally generate a useful policy for the game agent.
We referenced the methods and details of designing states in Brockman et al. (2016).

Usually, there is not a best standard way to design the game state representations for
RL training. We could use different state representations (e.g., the screenshot, the internal
values of games), which may have different granularity (i.e. , different game information).
The states with different granularity may lead to different performance for training the DRL
model. In particular, we developed game states by 3 steps: (1) we analyzed the characteris-
tics and mechanism of the games, and extracted all variables related to the progress of the
game, such as HP, MP and scores; (2) we summarized the values of these key variables as a

Empir Software Eng (2022) 27:140 Page 11 of 27 140

state vector (all the state vectors keep the same formality and length but differ from values
at each moment); (3) we integrated the internal reinforcement learning policies in NetEase
and public algorithms (Hill et al. 2018) on 5 games, and use the state vectors as input data to
train the polices of the agents. We verify whether these agents can learn useful knowledge
from the state vectors, and gradually improve the game performance.

Additionally, we defined possible actions of the game based on one-hot encoding. The
user only needs to input the unique action ID during testing and the action can be automati-
cally interpreted and executed in the game environment. We also developed other interfaces
such as resetting (i.e. , restart the game), initialization (i.e. , prepare the game environment)
and obtaining observation (i.e. , load the real-time states from the game).

Automated Game Testing Baselines. To enable comparative studies, we also tried our
best to collect classic and state-of-the-art game testing techniques as the baselines. The
baselines are representative automated game testing techniques with different strategies
(e.g., random-based strategy, reinforcement learning (RL) based strategy DQN, A2C,
A2C+C, and combined RL and genetic algorithm-based strategy Wuji (Zheng et al.
2019)). Users can propose a new approach and conduct a comparison with them.

Built-in Oracles. The oracles we inserted for each type of bugs are summarized as fol-
lows. It is worth mentioning that the built-in oracles for all 76 bugs cannot be directly
accessed and modified by users, since most of them were implemented into the compiled
game client.

– Oracle 1 (Crash): The crash oracle directly checks whether the game process is
terminated.

– Oracle 2 (Stuck): In general, game stuck status can be difficult to detect. One way
is to check whether a particular action is completed within a certain time limit. In
addition, since we know the triggering condition for each stuck bug, a specific ora-
cle that checks whether the triggering condition is satisfied is also introduced. For
example, once a special game state is reached, the game will get stuck.

– Oracle 3 (Game logic): We directly insert assertions to check whether the desired
logic constraints are violated.

– Oracle 4 (Game Balance): With the understanding of the balancing constraint of
each case, we design the oracle to check whether the expected balance properties are
violated, e.g., the feasible time to complete a target task cannot go under a minimum
threshold value, the health point of a character (e.g., monster) should not go beyond
a maximum threshold that should not occur in practice.

– Oracle 5 (Display): The display issue is difficult to detect automatically (e.g., the
graph rendering and the audio effects). The display issues in GBGallery can be
captured by checking the inconsistency of data flow and status of the display mod-
ules between the client and server, e.g., whether the displayed text can match the
back-end computation.

3.4 Themajor components and usage of GBGallery

In this subsection, we introduce the major components of the bug database and framework,
usage of GBGallery, e.g., how the GBGallery can be used to support the testing of video
games. More detailed discussion can be found at the accompanied website of this paper
(GBgallery 2021).

 140 Page 12 of 27 Empir Software Eng (2022) 27:140

The Major Components of GBGallery. As an opening source game bug database and
game testing framework, GBGallery contains 5 commercial games and 76 real industrial
game bugs in total, andGBGallery contains 5 independent software packages. Each game
contains the following elements:

– Game Software: The game entities (including the server programs and client
programs) and unified environment setup packages. Some programs have been
compiled into binary files and others are Python scripts, they can be directly
executed.

– Game Bugs: The game bugs were planted in the game software. The details of the
bugs can be found at our website (GBgallery 2021).

– Configuration File: The configuration allows users to make any number of bugs take
effect. Users can configure the specific bugs by modifying the JSON-style file, i.e. ,
bug config.JSON.

– Bug Oracles: The built-in bug oracles are in the compiled programs.
– DRL Interfaces: A set of reinforcement learning interfaces in Python files.
– Baselines: 5 existing automated game testing strategies.
– Testing Frameworks: We prepared a Python script named start testing.py in each

game package, in which the testing framework can be executed.

The Usage of GBGallery. The users can use GBGallery as follows: (1) run the game
client and server; (2) configure the game bugs required for testing; (3) configure the
integrated testing baselines and starting to run the game testing framework; (4) design
their own testing strategies. For (1)-(3), the users only need to modify the configura-
tion files (in JSON-style) and run the specific programs. For (4), the users can develop
the customized algorithm based on the provided sample solution. In summary, with the
game bugs inGBGallery, users can understand the challenges of automated game testing,
implement their own algorithms and compare the algorithms with integrated baselines.

4 Empirical study

Based on the proposed framework, we perform a large-scale empirical study to investigate
existing game testing methods (i.e. , the integrated baselines in GBGallery). In particu-
lar, with GBGallery, we first investigate the code coverage and state coverage that can be
achieved by the 5 testing strategies (RQ1 and RQ2). Then, we evaluate the bug detection
capability of these techniques (RQ3). We further analyze the correlation between different
coverage and the capability of bug detection (RQ4). At last, we perform an in-depth anal-
ysis on those bugs that are not detected by existing techniques and summarize the main
challenges that need to be addressed in future game testing research (RQ5).

4.1 Evaluation setup

We test each of the 5 games with the 5 testing strategies in GBGallery. For the RL based
strategies, including DQN (Hester et al. 2018; Mnih et al. 2013) and advantage actor-critic
A2C (Konda and Tsitsiklis 2000). DQN is one of the most famous DRL algorithms, which
uses DNN to represent the q-table, it drives the agent to interact with the environment and
learn a decision policy based on the feedback of each action, thus the agent can select
those actions which can bring more rewards from the environment in each state. A2C is
a more complex RL algorithm which uses a DNN model Actor to take the state from the

Empir Software Eng (2022) 27:140 Page 13 of 27 140

environment as input and output an action decision for the agent, and a Critic to criticize
the actions made by the Actor, thus the policy can be updated and improved. We referenced
the curiosity-based random network distillation (Burda et al. 2018) on A2C to formulate the
testing baseline A2C+C, which is more exploratory than A2C because of the extra reward if
the agent can meet more novel states in the environment.Wuji is a combination of evolution
algorithm (EA) and reinforcement learning, which is designed to learn a policy by RL, to
avoid the local optimum and further explore more states by EA. In Wuji, we also followed
the basic settings from the original publication (Zheng et al. 2019).

Each run of the testing strategy is allocated a time budget of 12 hours. We have tried to
set a longer time budget and it shows that after 12 hours for each single testing task, the
testing results become stable and the learning-based policies rarely change. To counteract
the randomness during the testing process, we repeat the execution of each configuration
5 times and calculate the average results. Overall, the game testing takes a total of 1,500
(=5*5*12*5) CPU hours.

In particular, for RQ1, we analyze the statement coverage and branch coverage achieved
by different testing strategies. For RQ2, we collect how many states (via state discretization)
are explored on a target game for measuring the exploration baselines. Note that the state
of each game is defined based on the domain knowledge of developers. For RQ3, we ana-
lyze the number of bugs detected by each method. Based on the results of RQ1, RQ2 and
RQ3, we measure the correlation between the code (state) coverage and the number of bugs
detected in RQ4. For RQ5, we perform a manual analysis of un-detected bugs and study
possible reasons. All the experiments are run on 4 servers with the same configuration, i.e.
, CPU (Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHZ) with 64 cores and 128G RAM.

4.2 RQ1: Statement and branch coverage

Tables 3 and 4 summarize the averaged statement coverage and branch coverage obtained by
each method, respectively. The first column lists the subject games and the first row shows
different testing methods. Overall, we can observe that the code coverage of all testing
methods is not very high. However, different strategies obtain similar code coverage results
with only slight deviations, i.e. , ≤12.35% and ≤8.98% difference for statement coverage
and branch coverage, respectively, across all cases.

Through analysis of code coverage, and discussion with the game development team in
NetEase, we found that the core functions are often very easy to be covered with only a few
steps while some code fragments that are relevant to the game resources (e.g., display, data
reading, model loading) are difficult to be covered. For example, in FB, the corresponding
code fragments of basic actions such as shoot, pass, defense, steal and congratulation, are

Table 3 Average statement coverage (%)

Items Random DQN A2C A2C+C Wuji

FB 44.51 42.39 47.62 46.58 46.30

JO 59.40 47.05 58.53 56.89 56.03

CGS 47.13 46.18 46.52 45.13 47.31

TD 51.75 52.60 57.13 56.82 50.06

Tank 72.12 78.35 75.06 75.00 77.48

Average 59.98 53.31 56.97 56.08 55.44

 140 Page 14 of 27 Empir Software Eng (2022) 27:140

Table 4 Average branch coverage (%)

Items Random DQN A2C A2C+C Wuji

FB 32.45 33.33 31.00 34.55 37.40

JO 58.63 53.90 57.80 58.76 52.40

CGS 43.03 42.21 42.35 41.26 41.67

TD 50.69 51.15 50.30 50.94 59.17

Tank 62.80 64.16 62.67 62.69 67.77

Average 49.52 48.95 48.82 49.64 51.68

easy to be covered, but those advanced skills (e.g., HookShot) are hardly triggered, neither
the functions of loading relative animation model.

We also found that almost all testing strategies can achieve a certain level of code cov-
erage within a very short time. In particular, statement coverage and branch coverage are
often saturated in less than 30 minutes. We executed the 5 different techniques repeatedly
and observed that most of the statements/branches covered by 5 strategies are the same, only
a small part of code they covered are different from each other. The reason is that most code
logic is highly piled in particular regions, most of which are basic modules and functions of
the game. And the statement or branch can be covered only if the game enters the related
scenes, but reaching such game scenes requires the testing strategies to be smart enough to
complete the up-streaming missions. For example, in Tank, if the player shoots its enemy
by a bullet, the specific program logic related to the bullet management and distance calcu-
lating will be mostly covered and the coverage data will not change much by further actions
or tests. But if the player cannot win the game, then those programs related to round reset,
reward settlement, difficulty upgrade would never be covered.

There are some code fragments related to the core functionalities that the agent cannot
cover because some corner game states are hard to be reached. For example, some advanced
skills or special actions are required to reach the game states. In FB, the skill NicePass
can only be triggered if the player successfully passes the ball under the very tight defense
condition, which is often hard to trigger.

4.3 RQ2: State coverage

As shown in RQ1, code coverage can be coarse and insufficient to reflect the game testing
sufficiency. We evaluate the coverage of game states in this section. Different from the
code coverage, states of games require to be defined based on the domain knowledge of
the games. In particular, the full state representation of each game is defined by the game
developers based on their domain knowledge. Then, we discretize and abstract the concrete
game states, where each variable in the game state vector will be normalized to a reasonable
range and divided into finite intervals, based on which our state coverage is measured.

Empir Software Eng (2022) 27:140 Page 15 of 27 140

Table 5 summarizes the state coverage achieved by different testing strategies. Compared
with code coverage, the state coverage achieved by different strategies is diverse. Overall,
for state coverage, we found that no single method outperforms the others in all cases.DQN,
A2C+C, and Wuji maintain a relatively high state coverage on all 5 games. Based on the
reward definition, we found that RL-based strategies often perform well in the complex
game environment.

We can also see that Random can also achieve certain state coverage in some cases. In
particular, it achieved the best result in TD because 1) the current TD version in GBGallery
is not large, i.e. , there are not many complex operations and logic, 2) the pre-defined reward
of RL may limit the exploration (e.g., tends to accomplish missions) and 3) there can be
some randomness in this game, e.g., the location of new tower and type of casted skills are
all randomly assigned, which greatly affects the policy learning process.

The state coverage achieved by testing methods could be different with different initial
states. Therefore, in GBGallery, we defined the initial state of testing as the starting point
of the game, which may make that some scenes and states of the game never be covered.
This is also one of the reasons for such a relatively low state coverage. In addition, although
the covered state spaces overlapped in GBGallery, different test methods still covered some
different states, this is why they detected different bugs.

4.4 RQ3: Bug detection

Table 6 summarizes the average percentage of bugs detected by different strategies and the
corresponding boxplot results are shown in Fig. 2. In general, all strategies can only detect
a small number of bugs. For example, Wuji detected the largest number of bugs, which is
only 23.16% of the bugs in GBGallery.

DQN, A2C+C and Wuji outperform Random and A2C in all cases, i.e. , more bugs are
detected in each game. Compared A2C with A2C+C, we found that the curiosity mechanism
can improve the capability of state exploration and reach more diverse game states. For
example, A2C+C achieved higher state coverage (see Table 5) and detected more bugs.

In Fig. 2, we can see that although the average number of bugs detected by Random
is generally less than other methods, it occasionally detected more bugs on JO and CGS,

Table 5 Average game state coverage (%) of each method

Items Random DQN A2C A2C+C Wuji

FB 36.48 46.90 43.15 46.87 59.43

JO 56.47 54.00 55.87 66.25 54.56

CGS 57.59 72.90 51.54 54.50 59.11

TD 38.96 38.02 36.77 38.24 30.94

Tank 24.97 10.92 21.00 52.10 43.98

Average 42.89 44.55 41.67 51.59 49.60

 140 Page 16 of 27 Empir Software Eng (2022) 27:140

Table 6 Average percentage of detected bugs on each game. (%)

Items Random DQN A2C A2C+C Wuji

FB 10.48 19.05 17.14 20.95 25.71

JO 16.36 16.36 14.55 20.00 14.55

CGS 15.56 22.22 13.33 17.78 20.00

TD 17.50 19.17 18.33 23.33 20.83

Tank 16.36 16.36 16.36 30.91 34.55

Average 15.00 18.68 16.58 22.63 23.16

indicating that the reward mechanism may miss some game states that can be reached by
Random.

Our further analysis shows that bug detection depends not only on the testing strategy
but also on the characteristics of games. Some games (e.g., TD, FB) are strategic games that
need better strategies with some level of intelligence to complete the mission. RL-based
approaches can perform much better on such games. Some games rely more on operations
instead of the intelligent strategy. For example, CGS requires real-time actions and a high
response speed of the player and the strategy is not so dominant. Thus we found that all
methods achieved similar results in terms of detected bugs on CGS.

Table 7 shows the average percentage of detected bugs by 5 testing tools on each cat-
egory. Table 8 shows all the failures caused by the game bugs in TD, including the bug
descriptions, categories, and detected by which method.Wuji detected the mostGame Logic,

(a) FB (b) JO (c) CGS

(d) TD (e) Tank

Fig. 2 The box-plots of detected bug number by each technique on the corresponding games

Empir Software Eng (2022) 27:140 Page 17 of 27 140

Table 7 Average percentage of detected bugs on each categories. (%)

Items Random DQN A2C A2C+C Wuji

Crash 18.00 20.00 16.00 36.00 22.00

Stuck 11.43 25.71 22.86 20.00 20.00

Game Logic 17.95 19.49 17.95 22.05 25.13

Game Balance 6.67 6.67 5.33 14.67 14.67

Display 12.00 36.00 28.00 28.00 40.00

Game Balance and Display bugs on all 5 games, and A2C+C detected the most bugs on
Crash and Game Balance. In addition, DQN detected the most Stuck bugs. From the results,
we observe that Wuji and A2C+C can detect more game bugs on different categories and
RL-based methods are better than Random policy due to the numbers. This trend is consis-
tent with the result of the average number of bugs in all categories. In addition, the Game
Logic bugs are the most detected category.

Figure 3 shows the unique bugs detected by different testing tools as well as their overlap.
It shows that, in the single subject game, there is at least one bug that can be uniquely
detected by a testing tool. For example, in CGS, 2 bugs can only be detected by Random and
one bug can only be detected by Wuji, but in JO and TD, DQN and A2C also detected one
unique bug, respectively. But overall, Random and Wuji can detect unique bugs on 4 games
which are the most in all methods.

Therefore, even the testing tool that detects the most bugs can not cover all test scenarios
(e.g., A2C+C and Wuji). On contrary, some testing tools (e.g. , Random) may not be com-
petitive in terms of overall results, but they can still detect some unique bugs that cannot be
detected by others. Based on the testing results from §4.2 and §4.3, a promising direction is
to combine the different testing strategies for better testing performance.

For example, Bug 9 and Bug 17 can only be detected by Random, and the trigger condi-
tions of these 2 bugs are not related to the game process, but requires some rare actions and
strategies. For Bug 9, the attack value is the sum of all the attack power of towers on the
map. If the player destroys all the towers and leaves the map with no defensive tower, the
attack value on the screen should be 0 but it still shows 10, which is the initial attack value.
In Bug 17, if all the towers are destroyed, the status of the tower is updated to be destroyed
and the level should be 0. However, the actual tower levels are all set to the initial tower
level one. These conditions cannot be covered by other RL-based testing tools, since adding
towers always earn reward and destroying tower loses reward. This mechanism tempts the
greedy agent to select those actions that can bring more rewards but eventually miss the
bugs.

On the contrary, Bug 16 and Bug 20 are detected byWuji and A2C, respectively. The bug
triggering conditions of these 2 bugs depend on the game progress. Specifically, players can
use certain skills only if the game proceeds to the last 45 seconds. The bugs can be triggered
only if these skills are used. These bugs can be detected by RL-based methods rather than
Random because only RL-based methods can learn how to play the game better.

In summary, we can leverage the advantages of different testing strategies by consider-
ing both the game playing and exploring more rare states, the testing results will be more
promising. We believe such a combination (e.g., Random and RL-based) can achieve better
results.

 140 Page 18 of 27 Empir Software Eng (2022) 27:140

Ta
bl
e
8

A
br
ie
f
de
sc
ri
pt
io
n
of

th
e
fa
ilu

re
s
du
e
to

th
e
co
rr
es
po
nd
in
g
bu
gs

de
te
ct
ed

by
al
l5

te
st
to
ol
s
on

To
w
er
D
ef
en
se

B
ug

ID
D
es
cr
ip
tio

n
of

Fa
ilu

re
s
C
au
se
d
by

th
e
G
am

e
B
ug
s

C
at
eg
or
ie
s

D
et
ec
te
d
by

M
et
ho
ds

B
ug

0
Fa
ile

d
to

su
m
m
on

a
sp
ec
ia
ld

ef
en
si
ve

to
w
er

C
ra
sh

R
an
do

m
,D

Q
N
,A

2C
,A

2C
+
C
,W

uj
i

B
ug

1
C
or
re
ct
ly

ca
lc
ul
at
ed

bu
tw

ro
ng
ly

up
da
te
d
to
w
er

bu
ff
va
lu
e

G
am

e
L
og
ic

–

B
ug

2
Pl
ay
er

ra
re
ly

su
m
m
on
ed

so
m
e
ty
pe
s
of

to
w
er

G
am

e
L
og
ic

–

B
ug

3
C
al
cu
la
tio

n
er
ro
r
w
he
n
ad
di
ng

bu
ff
fo
r
pl
ay
er
’s
to
w
er
s

G
am

e
L
og
ic

R
an
do
m
,D

Q
N
,A

2C
,A

2C
+
C
,W

uj
i

B
ug

4
w
he
n
de
le
te
a
to
w
er

th
e
lin

ke
d
to
w
er

sh
ou
ld

be
re
m
ov
ed

to
ge
th
er

bu
tf
ai
le
d

G
am

e
L
og
ic

–

B
ug

5
E
ne
m
y’
s
to
w
er

is
de
gr
ad
ed

to
le
ve
l-
0
bu
tt
he

lo
w
es
tl
ev
el
in

th
is
ga
m
e
is
1

G
am

e
L
og
ic

R
an
do
m
,D

Q
N
,A

2C
,A

2C
+
C
,W

uj
i

B
ug

6
T
he

to
w
er

ha
s
be
en

up
gr
ad
ed

bu
tt
he

in
cr
ea
se
d
at
ta
ck

po
w
er

di
d
no
tc
ha
ng
e

G
am

e
B
al
an
ce

W
uj
i

B
ug

7
C
al
cu
la
tio

n
er
ro
r
of

pl
ay
er
’s
in
fl
ue
nc
e
ra
ng
e
of

th
e
sk
ill

ca
st
in
g

G
am

e
B
al
an
ce

–

B
ug

8
D
es
tr
oy

th
e
to
w
er

bu
td

id
no
tf
re
e
its

sk
ill

ob
je
ct

G
am

e
L
og
ic

–

B
ug

9
T
he

di
sp
la
ye
d
en
er
gy

do
es

no
tm

at
ch

th
e
ac
tu
al
va
lu
e
in

th
e
pr
og
ra
m

D
is
pl
ay

R
an
do
m

B
ug

10
T
he

ga
m
e
cr
as
he
s
w
he
n
op
en

th
e
tr
ea
su
re

bo
x
(a

re
w
ar
d
af
te
r
th
e
ga
m
e)

C
ra
sh

–

B
ug

11
T
he
re

ar
e
m
or
e
th
an

12
(T
he

m
ax
im

um
of

to
w
er
s)
in

th
e
m
ap

G
am

e
L
og
ic

–

B
ug

12
Fa
ile

d
to

up
da
te
th
e
to
w
er

at
ta
ck

va
lu
e
on

sc
re
en

D
is
pl
ay

D
Q
N
,A

2C
,A

2C
+
C
,W

uj
i

B
ug

13
T
he

H
P
of

la
st
m
on
st
er

is
to
o
hi
gh

th
at
pl
ay
er

ca
nn
ot

de
fe
at
it

G
am

e
B
al
an
ce

–

B
ug

14
St
uc
k
w
he
n
us
in
g
sk
ill

sp
ee
d
up

ge
ar

St
uc
k

D
Q
N
,A

2C
,A

2C
+
C

B
ug

15
T
he

ga
m
e
cr
as
he
s
w
he
n
up
gr
ad
e
a
to
w
er

to
fu
ll
le
ve
l(
le
ve
l-
5)

C
ra
sh

D
Q
N
,A

2C
+
C

B
ug

16
T
he

sk
ill

re
in
fo
rc
e
ge
ar

do
es

no
tw

or
k

G
am

e
L
og
ic

W
uj
i

B
ug

17
Fa
ile
d
to

up
da
te
th
e
de
fe
ns
iv
e
to
w
er
’s
le
ve
l

G
am

e
L
og
ic

R
an
do
m

B
ug

18
A
m
on
st
er

tr
ie
d
to

us
e
sk
ill
s
bu
tf
ai
le
d
an
d
ca
us
e
th
e
ga
m
e
cr
as
he
d

C
ra
sh

–

B
ug

19
T
he

to
w
er

ob
je
ct
w
as

fr
ee
d
bu
ta

m
on
st
er

ca
st
sk
ill

on
th
e
to
w
er

St
uc
k

–

B
ug

20
T
he

sk
ill

ba
ck

st
ab

ca
us
es

cr
as
h

C
ra
sh

A
2C

,A
2C

+
C

B
ug

21
.

D
ie
d
m
on
st
er
’s
bo
dy

sh
ou
ld

be
co
m
e
a
bo
m
b,

bu
ti
td

oe
s
no
tw

or
k

G
am

e
L
og
ic

–

B
ug

22
T
he

pl
ay
er
’s
H
P
is
to
o
hi
gh

to
w
in

th
e
ga
m
e
al
lt
he

tim
e

G
am

e
B
al
an
ce

A
2C

+
C
,W

uj
i

B
ug

23
Fa
ile

d
to

ra
nd
om

ly
cr
ea
te
a
de
fe
ns
iv
e
to
w
er

fo
r
pl
ay
er

G
am

e
L
og
ic

R
an
do
m
,D

Q
N
,A

2C
,A

2C
+
C
,W

uj
i

Empir Software Eng (2022) 27:140 Page 19 of 27 140

(a) FB (b) JO (c) CGS

(d) TD (e) Tank

Fig. 3 The overlapped bug numbers (in 5 runs) detected by different testing tools on 5 games

4.5 RQ4: Correlation

To further investigate how the coverage metrics indicate the capability of bug detection,
we measure the correlation between the achieved coverage (i.e. , statement, branch, and
state) and the number of detected bugs. In particular, we adopt the Kendall τ coefficient
to calculate the correlation, which is also widely used in previous work (Inozemtseva and
Holmes 2014). Kendall τ is a statistical indicator used to measure the correlation between
two variables (e.g., the code coverage and the number of detected bugs). The scale of τ is
between -1 and 1, which means that two variables have completely negative correlation and
positive correlation, respectively. When τ is 0, two variables are independent.

Table 9 shows the correlation between different coverage obtained and the number of
detected bugs. We can observe that statement coverage, branch coverage and state cover-
age all have a positive correlation with bug detection, indicating that the reason of low code
coverage and missed bugs is that only those bugs on the covered elements can be detected.
Therefore, the testing strategies need to advance the game progress as much as possible, to
cover more game scenes and elements, in order to better improve the game testing perfor-
mance. On the other hand, the state coverage weakly outperformed the other 2 indicators
on the 3 of 5 games in terms of achieving a higher positive correlation score. An exception

 140 Page 20 of 27 Empir Software Eng (2022) 27:140

Table 9 Correlation between coverage and bug detection

Coverage criterion FB JO CGS TD Tank

Statement 0.333 0.215 0.276 0.333 0.447

Branch 0.333 0.645 0.276 0.067 0.149

State 0.733 0.645 0.828 0.200 0.745

is that, Wuji detects more bugs on TD but achieves lower state coverage, which affects the
correlation score.

4.6 RQ5: Study on undetected Bugs

Although the baseline strategies can detect a certain number of game bugs, there is still a
large space for further improvement. In this section, we show some case studies on bugs
missed by different strategies and analyze the reasons. From Table 10 we observed that there
are still many bugs that cannot be detected by all 5 methods, the difficulties of detecting
these bugs are not related to the categories, and the missed bugs are distributed among
almost all categories in the game. In general, the fundamental challenge is that the game
space is usually very large (i.e. , containing too many states) and there is no clear knowledge
on where the bugs occurred. We summarize two main reasons: 1) the limitation of testing
strategies in game exploration and 2) the difficulty of the bug triggering condition.

4.6.1 Limitation of strategies on game exploration

Due to the large space of games and the difficulty in game playing, the exploration algorithm
is especially important for game testing. For example, the state-of-the-art techniques Wuji
considers both the exploration and the mission accomplishment based on multi-objective
optimization. Based on the analysis of the undetected bugs, we found that existing meth-
ods are still ineffective in the exploration. Specifically, despite lack of intelligence, Random
strategy can still obtain certain state coverage as some states (related to the basic functions)

Table 10 A summary of missed bugs in each category on different games

Items FB JO CGS TD Tank Total

Crash 1 1 – 2 – 4

Stuck 1 – – 1 1 3

Game Logic 8 – 1 7 2 18

Game Balance 2 1 4 1 1 9

Display 2 – – – – 2

Total 14 2 5 11 4 36

Empir Software Eng (2022) 27:140 Page 21 of 27 140

are easy to be covered. However, it may miss some critical states that are related to the game
task because complex missions require an intelligent strategy to complete. Consequently,
Random only detects fewer bugs. Based on the reward guidance, RL-based approaches per-
form better for accomplishing missions and achieving higher state coverage. However, it
is still challenging to balance game exploration and accomplishment. We observed that the
reinforcement learning converges after some time, which makes the trained model have a
stable strategy (i.e. , play games with a fixed strategy), limiting its exploration.

As an example, In JO, we found that Random detected 4 distinct bugs that are not
detected by other strategies. These bugs locate in special states, in which the task could
have been completed. Thus, existing RL-based strategies are more inclined to finish this
task before reaching such states because the task completion can have a high reward. Ran-
dom could explore these states with a random exploration. Another confirmation is that
A2C+C (adding curiosity guidance) performs much better than A2C, which demonstrates
the usefulness of diverse exploration.

As another example, in TD, there is a bug that could be triggered if a special tower is
upgraded to level 5. It is difficult to obtain a level-5 tower because: 1) too many gold coins
are needed and 2) many level-1 towers are required to synthesize the level-5 tower. To win
the game, there are usually two different strategies, i.e. , building a large number of low-
level towers or a small number of high-level towers. Existing strategies tend to select the
former strategy while the latter strategy is not explored. Thus, this bug is not detected.

The results also reveal a potential research direction, i.e. , how to improve testing
exploration capability as much as possible while ensuring the completion of game missions.

4.6.2 Difficulty of bug trigger condition

During the testing, we observed that some bugs are quite difficult to be detected and special
states are required to be explored. These special states are diverse and strongly related to the
game characteristics therefore difficult to briefly summarize. And we will introduce some
examples in the following.

In FB, there are 14 bugs that cannot be found by all strategies. For example, some bugs
are triggered if the offensive player takes some special offensive actions (e.g., stop-jump
shot) during a collision with the defender, some bugs are triggered. However, such a condi-
tion is difficult to trigger as the defender (builtin-AI) would try to avoid the collision that is
likely to cause the foul. In Tank, the tank has the skill to recover the HP for friend tanks and
itself within a small range. However, there is a logical bug that if the enemy is in the range,
its HP can also be recovered. Due to the high attack speed between tanks, tanks are more
likely to be destroyed if they are getting closer to the enemy. Differently, the friends can be
in this range easily, making the bug hard to detect.

However, existing methods (especially the 5 methods inGBGallery) have no such knowl-
edge and are unlikely to reach these states. The results reveal some potential research
directions, e.g., how to improve the diversity of game playing to trigger some corner cases
states.

 140 Page 22 of 27 Empir Software Eng (2022) 27:140

4.7 Discussion of testing techniques in GBGallery

Based on the above experimental results, we believe that when we propose new automated
game testing methods in the future, we can refer to the characteristics and results of the
integrated methods. Although Random cannot complete game tasks and advance the game
progress, it can generate many novel decisions (i.e. , actions) that learning-based methods
cannot produce because its decision-making motivation is completely random. It can be seen
from the RL-based method that an agent with learning ability can detect a certain number
of game bugs in the test. Through the comparison of the experimental results of A2C+C
and A2C,DQN, we found that if the testing methods can improve the exploratory then the
agent can strengthen its testing ability. Wuji is an instance of improving the exploration of
the agent. Its experimental results further proved the importance of the diversity of the game
state for game testing.

From the test results achieved by the current testing methods inGBGallery still has space
for improvement. When users apply the above testing methods, they currently need a lot of
efforts to understand the game features and testing methodology, but the various interfaces
we provide in GBGallery (such as state abstraction) can reduce the needed extra efforts to a
certain extent.

5 Threats to validity

5.1 Internal threats to validity

The manual analysis process in our study can be an internal threat, e.g., bug and game
selection, bug injection, development of interfaces, and analysis of experimental results.
We follow the internal quality control process of NetEase to counteract such a threat. Even
though, it is still possible that we might introduce some minor issues. To counteract this, we
consulted the experience of professional game development teams as much as possible, and
discussed those diverged cases among the authors, until reaching a consensus on each issue.

Although we tried our best to develop and test this framework, the implementation may
be another threat, which might contain bugs and other reliability issues. For example, we
only tested our framework in our described environment, some bugs may not be repro-
ducible in new environments. Moreover, the usability including the GUI interface, the RL
interface and other configurations may not be user-friendly.

5.2 External threats to validity

The external threat could from the datasets (i.e. , 5 games and 76 bugs). At its early stage,
the scale of the database is relatively small, which could introduce some bias about our
conclusion. We plan to integrate more games and bugs in the future. Another threat could be
randomness in the testing process, to counteract this, we repeat each testing configuration 5
times and take the average results for the comparative analysis.

6 Conclusion

Automated game testing has been a longstanding challenge in the software engineering
community, with intense industrial demands. In this paper, we proposed the first framework

Empir Software Eng (2022) 27:140 Page 23 of 27 140

GBGallery to enable reproducible game testing research, which includes 76 representative
real game bugs in 5 industrial games. With GBGallery, we perform an empirical study to
evaluate current game testing techniques. The results demonstrate that the existing auto-
mated game testing methods still have rooms for improvement, which is not effective in
detecting game bugs and more advanced testing techniques need to be further investigated.
In the future, we plan to 1) extend GBGallery by introducing more bugs and large-scale
games towards facilitating the research on testing different games, 2) develop more meth-
ods to improve exploratory of existing testing methods and 3) combine the advantages of
multiple automated testing methods.

Acknowledgments This work was supported in part by funding from the Canada First Research Excellence
Fund as part of the University of Alberta’s Future Energy Systems research initiative, Canada CIFAR AI
Chairs Program, Amii RAP program, the Natural Sciences and Engineering Research Council of Canada
(NSERC No.RGPIN-2021-02549, No.RGPAS-2021-00034, No.DGECR-2021-00019), the Ministry of Edu-
cation, Singapore under its Academic Research Fund Tier 1 (21-SIS-SMU-033), as well as JSPS KAKENHI
Grant No.JP20H04168, No.JP21H04877, JST-Mirai Program Grant No.JPMJMI20B8, and JST SPRING
Grant.

References

Aleem S, Capretz LF, Ahmed F (2016) Critical success factors to improve the game development process
from a developer’s perspective. J Comput Sci Technol 31(5):925–950

Amann S, Nadi S, Nguyen HA, Nguyen TN, Mezini M (2016) Mubench: A benchmark for api-misuse detec-
tors. In: 2016 IEEE/ACM 13th working conference on mining software repositories (MSR), pp 464–
467

Amann S, Nguyen HA, Nadi S, Nguyen TN, Mezini M (2018) A systematic evaluation of static api-misuse
detectors. IEEE Trans Softw Eng 45(12):1170–1188

Banerjee I, Nguyen BN, Garousi V, Memon AM (2013) Graphical user interface (GUI) testing: Systematic
mapping and repository. Information & Software Technology 55(10):1679–1694

Borrelli A, Nardone V, Di Lucca GA, Canfora G, Di Penta M (2020) Detecting video game-specific bad
smells in unity projects. Association for Computing Machinery, New York, NY, USA, pp 198–208.
https://doi.org/10.1145/3379597.3387454

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016) Openai gym.
arXiv:1606.01540

Buglog (2015) Video game bug blog. https://airtable.com/universe/expEU1JW4I8ie2zOB/basic-video-game-
bug-log

Burda Y, Edwards H, Storkey A, Klimov O (2018) Exploration by random network distillation.
arXiv:1810.12894

Cadar C, Dunbar D, Engler DR et al (2008) Klee: unassisted and automatic generation of high-coverage tests
for complex systems programs. In: OSDI, vol 8, pp 209–224

Dallmeier V, Zimmermann T (2007) Extraction of bug localization benchmarks from history. In: Proceedings
of the twenty-second IEEE/ACM international conference on Automated software engineering, pp 433–
436

Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empir Softw Eng 10(4):405–435

Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering, pp 416–419

GBgallery (2021) https://sites.google.com/view/gbgallery
Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, Sendonaris A, Osband

I, et al. (2018) Deep q-learning from demonstrations. In: Thirty-second AAAI conference on artificial
intelligence

Hill A, Raffin A, Ernestus M, Gleave A, Kanervisto A, Traore R, Dhariwal P, Hesse C, Klimov O, Nichol A,
Plappert M, Radford A, Schulman J, Sidor S, Wu Y (2018) Stable baselines. https://github.com/hill-a/
stable-baselines

https://doi.org/10.1145/3379597.3387454
http://arxiv.org/abs/1606.01540
https://airtable.com/universe/expEU1JW4I8ie2zOB/basic-video-game-bug-log
https://airtable.com/universe/expEU1JW4I8ie2zOB/basic-video-game-bug-log
http://arxiv.org/abs/1810.12894
https://sites.google.com/view/gbgallery
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

 140 Page 24 of 27 Empir Software Eng (2022) 27:140

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. In: Proceedings of 16th international conference on software
engineering, pp 191–200

Iftikhar S, Iqbal MZ, Khan MU, Mahmood W (2015) An automated model based testing approach for plat-
form games. In: 2015 ACM/IEEE 18th international conference on model driven engineering languages
and systems (MODELS). IEEE, pp 426–435

Inozemtseva L, Holmes R (2014) Coverage is not strongly correlated with test suite effectiveness. In:
Proceedings of the 36th international conference on software engineering, pp 435–445

Just R, Jalali D, Ernst MD (2014) Defects4j: A database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
pp 437–440

Khalid H, NagappanM, Shihab E, Hassan AE (2014) Prioritizing the devices to test your app on: A case study
of android game apps. In: 22nd ACM SIGSOFT international symposium on foundations of software
engineering, pp 610–620

Konda VR, Tsitsiklis JN (2000) Actor-critic algorithms. In: Advances in neural information processing
systems, pp 1008–1014

Lin D, Bezemer C-P, Hassan AE (2017) Studying the urgent updates of popular games on the steam platform.
Empir Softw Eng 22(4):2095–2126

Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Le Traon Y (2019) You cannot fix what you cannot find!
an investigation of fault localization bias in benchmarking automated program repair systems. In: 2019
12th IEEE conference on software testing, validation and verification (ICST), pp 102–113

Lovreto G, Endo AT, Nardi P, Durelli VHS (2018) Automated tests for mobile games: An experience report.
In: 17th Brazilian symposium on computer games and digital entertainment, SBGames 2018, Foz do
Iguaçu, Brazil, October 29 - November 1, 2018, pp 48–56

Madeiral F, Urli S, Maia M, Monperrus M (2019) Bears: An extensible java bug benchmark for automatic
program repair studies. In: 2019 IEEE 26th international conference on software analysis, evolution and
reengineering (SANER). IEEE, pp 468–478

Madeiral F, Urli S, Maia M, Monperrus M (2019) Bears: An Extensible Java Bug Benchmark for Automatic
Program Repair Studies. In: Proceedings of the 26th IEEE international conference on software analysis,
evolution and reengineering (SANER ’19). arXiv:1901.06024

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing atari
with deep reinforcement learning. arXiv:1312.5602

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidje-
land AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. nature
518(7540):529–533

Newzoo (2020) Global games market report 2020. https://newzoo.com/insights/trend-reports/
newzoo-global-games-market-report-2020-light-version

Nordin M, King D, Posthuma S (2018) But is it fun? software testing in the video game industry. http://www.
es.mdh.se/icst2018/live/

Pacheco C, Ernst MD (2007) Randoop: feedback-directed random testing for java. In: Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and applications companion,
pp 815–816

Papadakis M, Shin D, Yoo S, Bae D (2018) Are mutation scores correlated with real fault detection? a large
scale empirical study on the relationship between mutants and real faults. In: IEEE/ACM 40th Intl Conf
on Software Engineering (ICSE), pp 537–548

Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B (2017) Evaluating and
improving fault localization. In: 2017 IEEE/ACM 39th international conference on software engineering
(ICSE), pp 609–620

Saha RK, Lyu Y, Lam W, Yoshida H, Prasad MR (2018) Bugs. jar: a large-scale, diverse dataset of real-
world java bugs. In: Proceedings of the 15th international conference on mining software repositories,
pp 10–13

Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A (2015) Do automatically generated unit
tests find real faults? an empirical study of effectiveness and challenges. In: Proceedings of the 30th
IEEE/ACM international conference on automated software engineering. ASE ’15, pp 201–211

Wu Y, Chen Y, Xie X, Yu B, Fan C, Ma L (2020) Regression testing of massively multiplayer online role-
playing games. In: 2020 IEEE international conference on software maintenance and evolution (ICSME),
pp 692–696

Zheng Y, Xie X, Su T, Ma L, Hao J, Meng Z, Liu Y, Shen R, Chen Y, Fan C (2019) Wuji: Automatic
online combat game testing using evolutionary deep reinforcement learning. In: 2019 34th IEEE/ACM
international conference on automated software engineering (ASE), pp 772–784

http://arxiv.org/abs/1901.06024
http://arxiv.org/abs/1312.5602
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2020-light-version
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2020-light-version
http://www.es.mdh.se/icst2018/live/
http://www.es.mdh.se/icst2018/live/

Empir Software Eng (2022) 27:140 Page 27 of 27 140

Affiliations

Zhuo Li1 ·YuechenWu2 · Lei Ma1,3,4 ·Xiaofei Xie5 ·Yingfeng Chen2 ·Changjie Fan2

� Yingfeng Chen
chenyingfeng1@corp.netease.com

Zhuo Li
li.zhuo.786@s.kyushu-u.ac.jp

Yuechen Wu
wuyuechen@corp.netease.com

Lei Ma
ma.lei@acm.org

Changjie Fan
fanchangjie@corp.netease.com

1 Kyushu University, Fukuoka, Japan
2 NetEase Fuxi AI Lab, Hangzhou, China
3 University of Alberta, Edmonton, Canada
4 Alberta Machine Intelligence Institute, Edmonton, Canada
5 Singapore Management University, Singapore, Singapore

http://orcid.org/0000-0002-1288-6502
mailto: chenyingfeng1@corp.netease.com
mailto: li.zhuo.786@s.kyushu-u.ac.jp
mailto: wuyuechen@corp.netease.com
mailto: ma.lei@acm.org
mailto: fanchangjie@corp.netease.com

